3,643
Views
31
CrossRef citations to date
0
Altmetric
Review

Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential

, , &
Pages 301-324 | Received 31 Aug 2020, Accepted 05 Nov 2020, Published online: 26 Nov 2020

References

  • Ranieri VM, Rubenfeld GD, Thompson BT. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–2533.
  • Singer M, Deutschman CS, Seymour CW. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) Consensus Definitions for Sepsis and Septic Shock Consensus Definitions for Sepsis and Septic Shock. JAMA. 2016;315(8):801–810.
  • Bellani G, Laffey JG, Pham T. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016;315(8):788–800.
  • Sakr Y, Jaschinski U, Wittebole X. Sepsis in Intensive Care Unit Patients: worldwide Data From the Intensive Care over Nations Audit. Open Forum Infect Dis. 2018;512: ofy 313.
  • Vincent JL, Jones G, David S. Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis. Crit Care. 2019;23(1):196.
  • Herridge MS, Tansey CM, Matte A. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–1304.
  • Bienvenu OJ, Friedman LA, Colantuoni E. Psychiatric symptoms after acute respiratory distress syndrome: a 5-year longitudinal study. Intensive Care Med. 2018;44(1):38–47.
  • Shankar-Hari M, Rubenfeld GD. Understanding Long-Term Outcomes Following Sepsis: implications and Challenges. Curr Infect Dis Rep. 2016;18(11):37.
  • Agus A, Hulme C, Verghis RM. Simvastatin for patients with acute respiratory distress syndrome: long-term outcomes and cost-effectiveness from a randomised controlled trial. Crit Care. 2017;21(1):108.
  • Westwood M, Ramaekers B, Whiting P. Procalcitonin testing to guide antibiotic therapy for the treatment of sepsis in intensive care settings and for suspected bacterial infection in emergency department settings: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2015;19(96):v–xxv.
  • Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585.
  • MacSweeney RM, McAuley DF. Acute respiratory distress syndrome. Lancet. 2016;388(10058):2416–2430.
  • Ziehr DR, Alladina J, Petri CR. Respiratory Pathophysiology of Mechanically Ventilated Patients with COVID-19: A Cohort Study. Am J Respir Crit Care Med. 2020;201(12):1560–1564.
  • Docherty AB, Harrison EM, Green CA. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985.
  • Griffiths MJD, McAuley DF, Perkins GD. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res. 2019;6(1):e000420.
  • Rhodes A, Evans LE, Alhazzani W. Surviving Sepsis Campaign: international Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486–552.
  • Shaw TD, McAuley DF, O’Kane CM. Emerging drugs for treating the acute respiratory distress syndrome. Expert Opin Emerg Drugs. 2019;24(1):29–41.
  • Villar J, Ferrando C, Martínez D. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–276.
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 — final Report. N Engl J Med. 2020. Ahead of print doi:10.1056/NEJMoa2007764.
  • Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with Covid-19 — preliminary Report. New England Journal of Medicine. 2020. Ahead of print doi:10.1056/NEJMoa2021436.
  • Boyle AJ, O’Kane CM, McAuley DF. Where next for cell-based therapy in ARDS. Thorax. 2019;74(1):13–15.
  • Dominici M, Le Blanc K, Mueller I. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317.
  • Horwitz EM, le K, Dominici M. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–395.
  • Gupta N, Krasnodembskaya A, Kapetanaki M. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax. 2012;67(6):533–539.
  • Nemeth K, Leelahavanichkul A, Yuen PS. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–49.
  • Gupta N, Su X, Popov B. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol. 2007;179(3):1855–1863.
  • Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–650.
  • Mushahary D, Spittler A, Kasper C. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry. 2018;93(1):19–31.
  • Friedenstein AJ, Petrakova KV, Kurolesova AI. Heterotopic transplants of bone marrow. Transplantation. 1968;6(2):230–247.
  • Le Blanc K, Tammik C, Rosendahl K. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–896.
  • Witwer KW, Van Balkom BWM, Bruno S. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles. 2019;8(1):1609206.
  • Ionescu L, Byrne RN, van Haaften T. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol. 2012;303(11):L967–77.
  • Yang Y, Hu S, Xu X. The Vascular Endothelial Growth Factors-Expressing Character of Mesenchymal Stem Cells Plays a Positive Role in Treatment of Acute Lung Injury In Vivo. Mediators Inflammation. 2016;2016:2347938.
  • Devaney J, Horie S, Masterson C. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E coli in the rat. Thorax. 2015;70(7):625–635.
  • Krasnodembskaya A, Samarani G, Song Y. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1003–13.
  • Shin S, Kim Y, Jeong S. The therapeutic effect of human adult stem cells derived from adipose tissue in endotoxemic rat model. Int J Med Sci. 2013;10(1):8–18.
  • Zhu H, Xiong Y, Xia Y. Therapeutic Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Acute Lung Injury Mice. Sci Rep. 2017;7(1):39889.
  • Perlee D, de Vos AF, Scicluna BP. Human Adipose-Derived Mesenchymal Stem Cells Modify Lung Immunity and Improve Antibacterial Defense in Pneumosepsis Caused by Klebsiella pneumoniae. Stem Cells Transl Med. 2019;8(8):785–796.
  • Pedrazza L, Cunha AA, Luft C. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation. J Cell Physiol. 2017;232(12):3552–3564.
  • Jackson MV, Morrison TJ, Doherty DF. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells. 2016;34(8):2210–2223.
  • Condor JM, Rodrigues CE, Sousa Moreira R. Treatment With Human Wharton’s Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction. Stem Cells Transl Med. 2016;5(8):1048–1057.
  • Rocheteau P, Chatre L, Briand D. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat Comms. 2015;6(1):10145.
  • Hayes M, Masterson C, Devaney J. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology. 2015;122(2):363–373.
  • Curley GF, Ansari B, Hayes M. Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury. Anesthesiology. 2013;118(4):924–932.
  • Alcayaga-Miranda F, Cuenca J, Martin A. Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Res Ther. 2015;6(1):199.
  • Sung DK, Chang YS, Sung SI. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell Microbiol. 2016;18(3):424–436.
  • Tan Y, Salkhordeh M, Wang JP. Thawed Mesenchymal Stem Cell Product Shows Comparable Immunomodulatory Potency to Cultured Cells In Vitro and in Polymicrobial Septic Animals. Sci Rep. 2019;9(1):18078.
  • Hu S, Li J, Xu X. The hepatocyte growth factor-expressing character is required for mesenchymal stem cells to protect the lung injured by lipopolysaccharide in vivo [Research Support, Non-U S. Gov’t].. Stem Cell Res Ther. 2016;7(1):66.
  • Yilmaz S, Inandiklioglu N, Yildizdas D. Mesenchymal stem cell: does it work in an experimental model with acute respiratory distress syndrome? Stem Cell Rev. 2013;9(1):80–92.
  • Hackstein H, Lippitsch A, Krug P. Prospectively defined murine mesenchymal stem cells inhibit Klebsiella pneumoniae-induced acute lung injury and improve pneumonia survival. Respir Res. 2015;16(1):123.
  • Curley GF, Hayes M, Ansari B. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax. 2012;67(6):496–501.
  • Danchuk S, Ylostalo JH, Hossain F. Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-alpha-induced protein 6. Stem Cell Res Ther. 2011;2(3):27.
  • Zhang S, Danchuk SD, Bonvillain RW. Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury. Stem Cells. 2014;32(6):1616–1628.
  • Silva JD, Lopes-Pacheco M, de Castro LL. Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Res Ther. 2019;10(1):264.
  • Kim JY, Kim DH, Kim JH. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques. Cell Death Differ. 2012;19(4):680–691.
  • Scheller J, Chalaris A, Schmidt-Arras D. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–888.
  • Hall SR, Tsoyi K, Ith B. Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils. Stem Cells. 2013;31(2):397–407.
  • Lee JW, Krasnodembskaya A, McKenna DH. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med. 2013;187(7):751–760.
  • Morrison TJ, Jackson MV, Cunningham EK. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am J Respir Crit Care Med. 2017;196(10):1275–1286.
  • Li B, Zhang H, Zeng M. Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/beta-catenin pathway. Cell Biol Int. 2015;39(2):192–200.
  • Lu Z, Chang W, Meng S. Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Res Ther. 2019;10(1):372.
  • Chao YH, Wu HP, Wu KH. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One. 2014;9(10):e110338.
  • Laroye C, Boufenzer A, Jolly L. Bone marrow vs Wharton’s jelly mesenchymal stem cells in experimental sepsis: a comparative study. Stem Cell Res Ther. 2019;10(1):192.
  • Horie S, Masterson C, Brady J. Umbilical cord-derived CD362(+) mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Res Ther. 2020;11(1):116.
  • Masterson C, Devaney J, Horie S. Syndecan-2-positive, Bone Marrow-derived Human Mesenchymal Stromal Cells Attenuate Bacterial-induced Acute Lung Injury and Enhance Resolution of Ventilator-induced Lung Injury in Rats. Anesthesiology. 2018;129(3):502–516.
  • Zhang Z, Li W, Heng Z. Combination therapy of human umbilical cord mesenchymal stem cells and FTY720 attenuates acute lung injury induced by lipopolysaccharide in a murine model. Oncotarget. 2017;8(44):77407–77414.
  • Asmussen S, Ito H, Traber DL. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax. 2014;69(9):819–825.
  • Laroye C, Lemarié J, Boufenzer A. Clinical-grade mesenchymal stem cells derived from umbilical cord improve septic shock in pigs. Intensive Care Med Exp. 2018;6(1):24.
  • Yagi H, Soto-Gutierrez A, Kitagawa Y. Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant. 2010;19(6):823–830.
  • Mei SH, McCarter SD, Deng Y. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007;4(9):e269.
  • Pati S, Gerber MH, Menge TD. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PLoS One. 2011;6(9):e25171.
  • Zhu Y-G, Feng X-M, Abbott J. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014;32(1):116–125.
  • Gennai S, Monsel A, Hao Q. Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation. Am J Transplant. 2015;15(9):2404–2412.
  • Ragni E, Banfi F, Barilani M. Extracellular Vesicle-Shuttled mRNA in Mesenchymal Stem Cell Communication. Stem Cells. 2017;35(4):1093–1105.
  • Tang XD, Shi L, Monsel A. Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by Ang-1 mRNA. Stem Cells. 2017;35(7):1849–1859.
  • Cai SX, Liu AR, Chen S. Activation of Wnt/beta-catenin signalling promotes mesenchymal stem cells to repair injured alveolar epithelium induced by lipopolysaccharide in mice. Stem Cell Res Ther. 2015;6(1):65.
  • Baudry N, Starck J, Aussel C. Effect of Preconditioned Mesenchymal Stromal Cells on Early Microvascular Disturbance in a Mouse Sepsis Model. Stem Cells Dev. 2019;28(24):1595–1606.
  • Islam MN, Das SR, Emin MT. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–765.
  • Islam D, Huang Y, Fanelli V. Identification and Modulation of Microenvironment Is Crucial for Effective Mesenchymal Stromal Cell Therapy in Acute Lung Injury. Am J Respir Crit Care Med. 2019;199(10):1214–1224.
  • Abreu SC, Rolandsson Enes S, Dearborn J. Lung inflammatory environments differentially alter mesenchymal stromal cell behavior. Am J Physiol Lung Cell Mol Physiol. 2019;317(6):L823–l831.
  • Krasnodembskaya A, Song Y, Fang X. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28(12):2229–2238.
  • Mei SHJ, Haitsma JJ, Dos Santos CC. Mesenchymal Stem Cells Reduce Inflammation while Enhancing Bacterial Clearance and Improving Survival in Sepsis. Am J Respir Crit Care Med. 2010;182(8):1047–1057.
  • Jerkic M, Gagnon S, Rabani R. Human Umbilical Cord Mesenchymal Stromal Cells Attenuate Systemic Sepsis in Part by Enhancing Peritoneal Macrophage Bacterial Killing via Heme Oxygenase-1 Induction in Rats. Anesthesiology. 2020;132(1):140–154.
  • Mao YX, Xu JF, Seeley EJ. Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Pulmonary Infection Caused by Pseudomonas aeruginosa via Inhibiting Overproduction of Prostaglandin E2. Stem Cells. 2015;33(7):2331–2342.
  • Zhao X, Liu D, Gong W. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells. 2014;32(2):521–533.
  • Najar M, Krayem M, Meuleman N. Mesenchymal Stromal Cells and Toll-Like Receptor Priming: A Critical Review. Immune Netw. 2017;17(2):89–102.
  • Rabani R, Volchuk A, Jerkic M. Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. Eur Respir J. 2018;51(4):1702021.
  • Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37(12):1445–1453.
  • Song Y, Dou H, Li X. Exosomal miR-146a Contributes to the Enhanced Therapeutic Efficacy of Interleukin-1β-Primed Mesenchymal Stem Cells Against Sepsis. Stem Cells. 2017;35(5):1208–1221.
  • François M, Romieu-Mourez R, Li M. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20(1):187–195.
  • Mittal M, Tiruppathi C, Nepal S. TNFα-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proc Natl Acd Sci U S A. 2016;113(50):E8151–E8158.
  • McIntyre LA, Moher D, Fergusson DA. Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A Systematic Review. PLoS One. 2016;11(1):e0147170.
  • Lalu MM, Sullivan KJ, Mei SH. Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. ELife. 2016;5:e17850.
  • Chang CL, Leu S, Sung HC. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. J Transl Med. 2012;10(1):244.
  • Moodley Y, Sturm M, Shaw K. Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury. Stem Cell Res. 2016;17(1):25–31.
  • Ihara K, Fukuda S, Enkhtaivan B. Adipose-derived stem cells attenuate pulmonary microvascular hyperpermeability after smoke inhalation. PLoS One. 2017;12(10):e0185937.
  • Millar JE, Bartnikowski N, Passmore MR. Combined Mesenchymal Stromal Cell Therapy and ECMO in ARDS: A Controlled Experimental Study in Sheep. Am J Respir Crit Care Med. 2020;202(3):383–392.
  • Kocyildirim E, Cárdenes N, Ting A. The Use of GMP-Produced Bone Marrow-Derived Stem Cells in Combination with Extracorporeal Membrane Oxygenation in ARDS: an Animal Model. Asaio J. 2017;63(3):324–332.
  • Millar JE, von Bahr V, Malfertheiner MV. Administration of mesenchymal stem cells during ECMO results in a rapid decline in oxygenator performance. Thorax. 2019;74(2):194.
  • Gorman E, Shankar-Hari M, Hopkins P. Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration in COVID-19 (REALIST-COVID-19): A structured summary of a study protocol for a randomised, controlled trial. Trials. 2020;21(1):462.
  • Lee JW, Fang X, Gupta N. Allogeneic human mesenchymal stem cells for treatment of E coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A. 2009;106(38):16357–16362.
  • McAuley DF, Curley GF, Hamid UI. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol. 2014;306(9):L809–15.
  • Chan MCW, Kuok DIT, Leung CYH. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proc Natl Acad Sci U S A. 2016;113(13):3621.
  • Loy H, Kuok DIT, Hui KPY. Therapeutic Implications of Human Umbilical Cord Mesenchymal Stromal Cells in Attenuating Influenza A(H5N1) Virus-Associated Acute Lung Injury. J Infect Dis. 2019;219(2):186–196.
  • Li Y, Xu J, Shi W. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice. Stem Cell Res Ther. 2016;7(1):159.
  • Darwish I, Banner D, Mubareka S. Mesenchymal stromal (stem) cell therapy fails to improve outcomes in experimental severe influenza. PLoS One. 2013;8(8):e71761.
  • Gotts JE, Abbott J, Matthay MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am J Physiol Lung Cell Mol Physiol. 2014;307(5):L395–406.
  • Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther. 2018;9(1):17.
  • Chan MC, Kuok DI, Leung CY. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proc Natl Acad Sci U S A. 2016;113(13):3621–3626.
  • Tripathi S, Tecle T, Verma A. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol. 2013;94(1):40–49.
  • Khatri M, Saif YM. Influenza virus infects bone marrow mesenchymal stromal cells in vitro: implications for bone marrow transplantation. Cell Transplant. 2013;22(3):461–468.
  • Leng Z, Zhu R, Hou W. Transplantation of ACE2(-) Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis. 2020;11(2):216–228.
  • Krishnakumar V, Durairajan SSK, Alagarasu K. Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses. 2019;11(3):252.
  • Ilyushina NA, Khalenkov AM, Seiler JP. Adaptation of pandemic H1N1 influenza viruses in mice. J Virol. 2010;84(17):8607–8616.
  • Jiang R-D, Liu M-Q, Chen Y. Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2. Cell. 2020;182(1):50–58. e8.
  • Panes J, Garcia-Olmo D, Van Assche G. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet. 2016;388(10051):1281–1290.
  • Kebriaei P, Hayes J, Daly A. A Phase 3 Randomized Study of Remestemcel-L versus Placebo Added to Second-Line Therapy in Patients with Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2019;26(5):835–844.
  • Thompson M, Mei SHJ, Wolfe D. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: an updated systematic review and meta-analysis. EClinicalMedicine. 2020;19:100249.
  • Hmadcha A, Martin-Montalvo A, Gauthier BR. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front Bioeng Biotechnol. 2020;8:43.
  • Tatsumi K, Ohashi K, Matsubara Y. Tissue factor triggers procoagulation in transplanted mesenchymal stem cells leading to thromboembolism. Biochem Biophys Res Commun. 2013;431(2):203–209.
  • Perlee D, van Vught LA, Scicluna BP. Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial. Stem Cells. 2018;36(11):1778–1788.
  • Zheng G, Huang L, Tong H. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res. 2014;15:39.
  • Yip HK, Fang WF, Li YC. Human Umbilical Cord-Derived Mesenchymal Stem Cells for Acute Respiratory Distress Syndrome. Crit Care Med. 2020;48(5):e391–e399.
  • Lv H, Chen W, Xiang AP. Mesenchymal stromal cells as a salvage treatment for confirmed acute respiratory distress syndrome: preliminary data from a single-arm study. Intensive Care Med. 2020;46(10):1944–1947.
  • Wilson JG, Liu KD, Zhuo H. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Resp Med. 2015;3(1):24–32.
  • Matthay MA, Calfee CS, Zhuo H. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Resp Med. 2019;7(2):154–162.
  • Khan RS, Newsome PNA. Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front Immunol. 2019;10:1952.
  • Bellingan GJ, Jacono F, Bannard-Smith J. Primary analysis of a Phase 1/2 study to assess MultiStem cell therapy, a regenerative advanced therapy medicinal product (ATMP), in acute respiratory distress syndrome (MUST-ARDS) (ABSTRACT). Am J Respir Crit Care Med. 2020;201:A7353.
  • Chen J, Hu C, Chen L, et al. Clinical study of mesenchymal stem cell treating acute respiratory distress syndrome induced by epidemic Influenza A (H7N9) infection, a hint for COVID-19 treatment. Engineering. 2020. Ahead of print doi: 10.1016/j.eng.2020.02.006.
  • McIntyre LA, Stewart DJ, Mei SHJ. Cellular Immunotherapy for Septic Shock A Phase I Clinical Trial.. Am J Respir Crit Care Med. 2018;197(3):337–347.
  • He X, Ai S, Guo W. Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: a phase 1 clinical trial. Transl Res. 2018;199:52–61.
  • Galstyan GM, Parovichnikova E, Kuzmina L. The results of the single center pilot randomized Russian clinical trial of Mesenchymal Stromal Cells in Severe Neutropenic Patients with Septic Shock (RUMCESS). In J Blood Res Dis. 2018;5:033.
  • Leng Z, Zhu R, How W. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis. 2020;11(2):216–228.
  • Chen X, Shan Y, Wen Y. Mesenchymal stem cell therapy in severe COVID-19: A retrospective study of short-term treatment efficacy and side effects. J Infect. 2020;81(4):647–679.
  • Sengupta V, Sengupta S, Lazo A Jr. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells Dev. 2020;29(12):747–754.
  • Sánchez-Guijo F, García-Arranz M, López-Parra M. Adipose-derived mesenchymal stromal cells for the treatment of patients with severe SARS-CoV-2 pneumonia requiring mechanical ventilation A proof of concept study. EClinicalMedicine. 2020;25:100454.
  • Li X, Bai J, Ji X. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014;34(3):695–704.
  • Bárcia RN, Santos JM, Filipe M. What Makes Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Superior Immunomodulators When Compared to Bone Marrow Derived Mesenchymal Stromal Cells? Stem Cells Int. 2015;2015:583984.
  • Laroye C, Boufenzer A, Jolly L. Bone marrow vs Wharton’s jelly mesenchymal stem cells in experimental sepsis: a comparative study. Stem Cell Res Ther. 2019;10(1):192.
  • Curley GF, Jerkic M, Dixon S. Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome. Crit Care Med. 2017;45(2):e202–e212.
  • Hua J, Gong J, Meng H, et al. Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow. Cell Biol Int. 2013; Ahead of print 10.1002/cbin.10188.
  • Lv F-J, Tuan RS, Cheung KMC. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32(6):1408–1419.
  • Bobis-Wozowicz S, Kmiotek K, Kania K. Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J Mol Med. 2017;95(2):205–220.
  • Rafiq QA, Twomey K, Kulik M. Developing an automated robotic factory for novel stem cell therapy production. Regen Med. 2016;11(4):351–354.
  • Horie S, Gaynard S, Murphy M. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Med Exp. 2020;8(1):8.
  • Lee SG, Joe YA. Autophagy mediates enhancement of proangiogenic activity by hypoxia in mesenchymal stromal/stem cells. Biochem Biophys Res Commun. 2018;501(4):941–947.
  • Meng SS, Xu XP, Chang W. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning. Stem Cell Res Ther. 2018;9(1):280.
  • Bader AM, Klose K, Bieback K. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS One. 2015;10(9):e0138477.
  • Li L, Jin S, Zhang Y. Ischemic preconditioning potentiates the protective effect of mesenchymal stem cells on endotoxin-induced acute lung injury in mice through secretion of exosome. Int J Clin Exp Med. 2015;8(3):3825–3832.
  • Tsoyi K, Hall SR, Dalli J. Carbon Monoxide Improves Efficacy of Mesenchymal Stromal Cells During Sepsis by Production of Specialized Proresolving Lipid Mediators. Crit Care Med. 2016;44(12):e1236–e1245.
  • Saeedi P, Halabian R, Fooladi AAI. Antimicrobial effects of mesenchymal stem cells primed by modified LPS on bacterial clearance in sepsis. J Cell Physiol. 2019;234(4):4970–4986.
  • Saeedi P, Halabian R, Fooladi AAI. Mesenchymal stem cells preconditioned by staphylococcal enterotoxin B enhance survival and bacterial clearance in murine sepsis model. Cytotherapy. 2019;21(1):41–53.
  • Li L, Dong L, Zhang J. Mesenchymal stem cells with downregulated Hippo signaling attenuate lung injury in mice with lipopolysaccharide-induced acute respiratory distress syndrome. Int J Mol Med. 2019;43(3):1241–1252.
  • Lv H, Liu Q, Sun Y. Mesenchymal stromal cells ameliorate acute lung injury induced by LPS mainly through stanniocalcin-2 mediating macrophage polarization. Ann Transl Med. 2020;8(6):334.
  • Chen X, Wu S, Tang L. Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats. J Cell Physiol. 2019;234(5):7301–7319.
  • Zhang S, Jiang W, Ma L. Nrf2 transfection enhances the efficacy of human amniotic mesenchymal stem cells to repair lung injury induced by lipopolysaccharide. J Cell Biochem. 2018;119(2):1627–1636.
  • Chen J, Li C, Gao X. Keratinocyte Growth Factor Gene Delivery via Mesenchymal Stem Cells Protects against Lipopolysaccharide-Induced Acute Lung Injury in Mice. PLoS One. 2013;8(12):e83303.
  • Li JW, Wu X. Mesenchymal stem cells ameliorate LPS-induced acute lung injury through KGF promoting alveolar fluid clearance of alveolar type II cells. Eur Rev Med Pharmacol Sci. 2015;19(13):2368–2378.
  • Xu J, Qu J, Cao L. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol. 2008;214(4):472–481.
  • Jerkic M, Masterson C, Ormesher L. Overexpression of IL-10 Enhances the Efficacy of Human Umbilical-Cord-Derived Mesenchymal Stromal Cells in E coli Pneumosepsis. J Clin Med. 2019;8(6):847.
  • Wang C, Lv D, Zhang X. Interleukin-10-Overexpressing Mesenchymal Stromal Cells Induce a Series of Regulatory Effects in the Inflammatory System and Promote the Survival of Endotoxin-Induced Acute Lung Injury in Mice Model. DNA Cell Biol. 2018;37(1):53–61.
  • Su VY, Lin CS, Hung SC. Mesenchymal Stem Cell-Conditioned Medium Induces Neutrophil Apoptosis Associated with Inhibition of the NF-kappaB Pathway in Endotoxin-Induced Acute Lung Injury. Int J Mol Sci. 2019;20(9):2208.
  • Park KS, Svennerholm K, Shelke GV. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther. 2019;10(1):231.
  • Silva JD, de Castro LL, Braga CL. Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells International. 2019;2019:8262849.
  • Varkouhi AK, Jerkic M, Ormesher L. Extracellular Vesicles from Interferon-gamma-primed Human Umbilical Cord Mesenchymal Stromal Cells Reduce Escherichia coli-induced Acute Lung Injury in Rats. Anesthesiology. 2019;130(5):778–790.
  • Monsel A, Zhu YG, Gennai S. Therapeutic Effects of Human Mesenchymal Stem Cell-derived Microvesicles in Severe Pneumonia in Mice. Am J Respir Crit Care Med. 2015;192(3):324–336.
  • Zhu YG, Feng XM, Abbott J. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014;32(1):116–125.
  • Park J, Kim S, Lim H. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E coli pneumonia. Thorax. 2019;74(1):43–50.
  • Hayes M, Curley GF, Masterson C. Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Med Exp. 2015;3(1):29.
  • McCarthy SD, Horgan E, Ali A. Nebulized Mesenchymal Stem Cell Derived Conditioned Medium Retains Antibacterial Properties Against Clinical Pathogen Isolates. J Aerosol Med Pulm Drug Deliv. 2020;33(3):140–152.
  • Li M, Luo X, Lv X. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res Ther. 2016;7(1):160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.