2,092
Views
1
CrossRef citations to date
0
Altmetric
Review

A multimodal approach to detect and monitor early lung disease in cystic fibrosis

, , , , &
Pages 761-772 | Received 20 Nov 2020, Accepted 22 Mar 2021, Published online: 12 Apr 2021

References

  • Davies JC, Alton EWFW, Bush A. Cystic fibrosis. BMJ. 2007;335(7632):1255–1259.
  • Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med. 2015;372(4):351–362.
  • Meyerholz DK. Lessons learned from the cystic fibrosis pig. Theriogenology. 2016;86(1):427–432.
  • Grasemann H, Ratjen F. Early lung disease in cystic fibrosis. Lancet Respir Med. 2013;1(2):148–157.
  • Cystic Fibrosis Foundation. 2018 patient registry: annual data report. 2019. [cited 2020 Jan 2]. Available from: https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2018-Patient-Registry-Annual-Data-Report.pdf
  • Waters V, Ratjen F. Pulmonary exacerbations in children with cystic fibrosis. Ann Am Thorac Soc. 2015;12(suppl 2):S200–S206.
  • Linnane BM, Hall GL, Nolan G, et al. Lung function in infants with cystic fibrosis diagnosed by newborn screening. Am J Respir Crit Care Med. 2008;178(12):1238–1244.
  • Sly PD, Brennan S, Gangell C, et al. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med. 2009;180(2):146–152.
  • Hoo AF, Thia LP, Nguyen TTD, et al. Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax. 2012;67(10):874–881.
  • Bush A, Davies J. Early detection of lung disease in preschool children with cystic fibrosis. Curr Opin Pulm Med. 2005;11(6):534–538.
  • Pittman JE, Cutting G, Davis SD, et al. Cystic fibrosis: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc. 2014;11(suppl 3):S161–S168.
  • Ramsey KA, Ranganathan S. Interpretation of lung function in infants and young children with cystic fibrosis. Respirology. 2014;19(6):792–799.
  • Ramsey BW, Banks-Schlegel S, Accurso FJ, et al. Future directions in early cystic fibrosis lung disease research: an NHLBI workshop report. Am J Respir Crit Care Med. 2012;185(8):887–892.
  • Stanojevic S, Davis SD, Retsch-Bogart G, et al. Progression of lung disease in preschool patients with cystic fibrosis. Am J Respir Crit Care Med. 2017;195(9):1216–1225.
  • Brownell JN, Bashaw H, Stallings VA. Growth and nutrition in cystic fibrosis. Semin Respir Crit Care Med. 2019;40(6):775–791.
  • Duncan JA, Aurora P. Monitoring early lung disease in cystic fibrosis: where are we now? Breathe. 2014;10(1):34–47.
  • Khan TZ, Wagener JS, Bost T, et al. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995;151(4):1075–1082.
  • Bush A, Sly PD. Evolution of cystic fibrosis lung function in the early years. Curr Opin Pulm Med. 2015;21(6):602–608.
  • Ranganathan SC, Hall GL, Sly PD, et al. Early lung disease in infants and preschool children with cystic fibrosis. What have we learned and what should we do about it? Am J Respir Crit Care Med. 2017;195(12):1567–1575.
  • Ramsey KA, Schultz A, Stick SM. Biomarkers in paediatric cystic fibrosis lung disease. Paediatr Respir Rev. 2015;16(4):213–218.
  • Tiddens HAWM, Puderbach M, Venegas JG, et al. Novel outcome measures for clinical trials in cystic fibrosis. Pediatr Pulmonol. 2015;50(3):302–315.
  • Lum S. Lung function in preschool children: applications in clinical and epidemiological research. Paediatr Respir Rev. 2006;7(suppl 1):S30–S32.
  • Ranganathan S, Linnane B, Nolan G, et al. Early detection of lung disease in children with cystic fibrosis using lung function. Paediatr Respir Rev. 2008;9(3):160–167.
  • Davies JC, Alton EW. Monitoring respiratory disease severity in cystic fibrosis. Respir Care. 2009;54(5):606–617.
  • Petousi N, Talbot NP, Pavord I, et al. Measuring lung function in airways diseases: current and emerging techniques. Thorax. 2019;74(8):797–805.
  • De Jong PA, Nakano Y, Lequin MH, et al. Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J. 2004;23(1):93–97.
  • Ren CL, Brucker JL, Rovitelli AK, et al. Changes in lung function measured by spirometry and the forced oscillation technique in cystic fibrosis patients undergoing treatment for respiratory tract exacerbation. Pediatr Pulmonol. 2006;41(4):345–349.
  • Matecki S, Kent L, De Boeck K, et al. Is the raised volume rapid thoracic compression technique ready for use in clinical trials in infants with cystic fibrosis? J Cyst Fibros. 2016;15(1):10–20.
  • Horsley AR, O’Neill K, Downey DG, et al. Closed circuit rebreathing to achieve inert gas wash-in for multiple breath wash-out. ERJ Open Res. 2016;2(1):00042–2015.
  • Subbarao P, Milla C, Aurora P, et al. Multiple-breath washout as a lung function test in cystic fibrosis. A Cystic Fibrosis Foundation workshop report. Ann Am Thorac Soc. 2015;12(6):932–939.
  • Robinson PD, Latzin P, Verbanck S, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J. 2013;41(3):507–522.
  • Gustafsson PM, De Jong PA, Tiddens HAWM, et al. Multiple-breath inert gas washout and spirometry versus structural lung disease in cystic fibrosis. Thorax. 2008;63(2):129–134.
  • Horsley AR, Gustafsson PM, Macleod KA, et al. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Thorax. 2008;63(2):135–140.
  • Horsley A. Lung clearance index in the assessment of airways disease. Respir Med. 2009;103(6):793–799.
  • Amin R, Subbarao P, Jabar A, et al. Hypertonic saline improves the LCI in paediatric patients with CF with normal lung function. Thorax. 2010;65(5):379–383.
  • Amin R, Subbarao P, Lou W, et al. The effect of dornase alfa on ventilation inhomogeneity in patients with cystic fibrosis. Eur Respir J. 2011;37(4):806–812.
  • Davies J, Sheridan H, Bell N, et al. Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a G551D-CFTR mutation and preserved spirometry: a randomised controlled trial. Lancet Respir Med. 2013;1(8):630–638.
  • Ratjen F, Davis SD, Stanojevic S, et al. Inhaled hypertonic saline in preschool children with cystic fibrosis (SHIP): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2019;7(9):802–809.
  • Lum S, Stocks J, Stanojevic S, et al. Age and height dependence of lung clearance index and functional residual capacity. Eur Respir J. 2013;41(6):1371–1377.
  • Singer F, Kieninger E, Abbas C, et al. Practicability of nitrogen multiple-breath washout measurements in a pediatric cystic fibrosis outpatient setting. Pediatr Pulmonol. 2013;48(8):739–746.
  • O’Neill K, Bradley JM, Johnston E, et al. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis. PLoS One. 2015;10(5):e0126980.
  • Horsley A, Wild JM. Ventilation heterogeneity and the benefits and challenges of multiple breath washout testing in patients with cystic fibrosis. Paediatr Respir Rev. 2015;16(suppl 1):15–18.
  • Downing B, Irving S, Bingham Y, et al. Feasibility of lung clearance index in a clinical setting in pre-school children. Eur Respir J. 2016;48(4):1074–1080.
  • Kane M, Rayment JH, Jensen R, et al. Correcting for tissue nitrogen excretion in multiple breath washout measurements. PLoS One. 2017;12(10):e0185553.
  • Poncin W, Singer F, Aubriot AS, et al. Agreement between multiple-breath nitrogen washout systems in children and adults. J Cyst Fibros. 2017;16(2):258–266.
  • Raaijmakers L, Jensen R, Stanojevic S, et al. Validation of multiple breath washout devices. J Cyst Fibros. 2017;16(6):e22–e23.
  • Bell AS, Lawrence PJ, Singh D, et al. Feasibility and challenges of using multiple breath washout in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:2113–2119.
  • Lenherr N, Ramsey KA, Jost K, et al. Leaks during multiple-breath washout: characterisation and influence on outcomes. ERJ Open Res. 2018;4(1):00012–2017.
  • Perrem L, Rayment JH, Ratjen F. The lung clearance index as a monitoring tool in cystic fibrosis: ready for the clinic? Curr Opin Pulm Med. 2018;24(6):579–585.
  • Robinson PD, Lum S, Moore C, et al. Comparison of facemask and mouthpiece interfaces for multiple breath washout measurements. J Cyst Fibros. 2018;17(4):511–517.
  • Oude Engberink E, Ratjen F, Davis SD, et al. Inter-test reproducibility of the lung clearance index measured by multiple breath washout. Eur Respir J. 2017;50(4):1700433.
  • Sonneveld N, Stanojevic S, Amin R, et al. Lung clearance index in cystic fibrosis subjects treated for pulmonary exacerbations. Eur Respir J. 2015;46(4):1055–1064.
  • Lum S, Gustafsson P, Ljungberg H, et al. Early detection of cystic fibrosis lung disease: multiple-breath washout versus raised volume tests. Thorax. 2007;62(4):341–347.
  • Gangell C, Gard S, Douglas T, et al. Inflammatory responses to individual microorganisms in the lungs of children with cystic fibrosis. Clin Infect Dis. 2011;53(5):425–432.
  • Ratjen F, Hug C, Marigowda G, et al. Efficacy and safety of lumacaftor and ivacaftor in patients aged 6-11 years with cystic fibrosis homozygous for F508del-CFTR: a randomised, placebo-controlled phase 3 trial. Lancet Respir Med. 2017;5(7):557–567.
  • Anagnostopoulou P, Latzin P, Jensen R, et al. Normative data for multiple breath washout outcomes in school-aged Caucasian children. Eur Respir J. 2020;55(4):1901302.
  • Horsley AR, Alrumuh A, Bianco B, et al. Lung clearance index in healthy volunteers, measured using a novel portable system with a closed circuit wash-in. PLoS One. 2020;15(2):e0229300.
  • Walicka-Serzysko K, Postek M, Milczewska J, et al. Change in lung clearance index with microbiological status in children with cystic fibrosis. Pediatr Pulmonol. 2019;54(6):729–736.
  • Vermeulen F, Proesmans M, Boon M, et al. Lung clearance index predicts pulmonary exacerbations in young patients with cystic fibrosis. Thorax. 2014;69(1):39–45.
  • Hardaker KM, Panda H, Hulme K, et al. Abnormal preschool lung clearance index (LCI) reflects clinical status and predicts lower spirometry later in childhood in cystic fibrosis. J Cyst Fibros. 2019;18(5):721–727.
  • Aurora P, Stanojevic S, Wade A, et al. Lung clearance index at 4 years predicts subsequent lung function in children with cystic fibrosis. Am J Respir Crit Care Med. 2011;183(6):752–758.
  • Svedberg M, Gustafsson PM, Robinson PD, et al. Variability of lung clearance index in clinically stable cystic fibrosis lung disease in school age children. J Cyst Fibros. 2018;17(2):236–241.
  • Stahl M, Joachim C, Wielpütz MO, et al. Comparison of lung clearance index determined by washout of N2 and SF6 in infants and preschool children with cystic fibrosis. J Cyst Fibros. 2019;18(3):399–406.
  • Horsley A, Nissenbaum C, Guglani L, et al. Comment on Comparison of lung clearance index determined by washout of N2 and SF6 in infants and preschool children with cystic fibrosis. J Cyst Fibros. 2019;18(3):e26–e27.
  • Horsley A, Macleod K, Gupta R, et al. Enhanced photoacoustic gas analyser response time and impact on accuracy at fast ventilation rates during multiple breath washout. PLoS One. 2014;9(6):e98487.
  • Singer F, Yammine S, Schmidt A, et al. Ventilatory response to nitrogen multiple-breath washout in infants. Pediatr Pulmonol. 2014;49(4):342–347.
  • Schibler A, Schneider M, Frey U, et al. Moment ratio analysis of multiple breath nitrogen washout in infants with lung disease. Eur Respir J. 2000;15(6):1094–1101.
  • Robinson PD, Latzin P, Ramsey KA, et al. Preschool multiple-breath washout testing. An official American Thoracic Society technical statement. Am J Respir Crit Care Med. 2018;197(5):e1–e19.
  • Kent L, Reix P, Innes JA, et al. Lung clearance index: evidence for use in clinical trials in cystic fibrosis. J Cyst Fibros. 2014;13(2):123–138.
  • Latzin P, Sauteur L, Thamrin C, et al. Optimized temperature and deadspace correction improve analysis of multiple breath washout measurements by ultrasonic flowmeter in infants. Pediatr Pulmonol. 2007;42(10):888–897.
  • Banton GL, Hall GL, Tan M, et al. Multiple breath washout cannot be used for tidal breath parameter analysis in infants. Pediatr Pulmonol. 2016;51(5):531–540.
  • Shawcross A, Murray CS, Goddard N, et al. Accurate lung volume measurements in vitro using a novel inert gas washout method suitable for infants. Pediatr Pulmonol. 2016;51(5):491–497.
  • Shawcross A, Murray CS, Pike K, et al. A novel method for infant multiple breath washout: first report in clinical practice. Pediatr Pulmonol. 2019;54(8):1284–1290.
  • De Jong PA, Achterberg JA, Kessels OAM, et al. Modified Chrispin-Norman chest radiography score for cystic fibrosis: observer agreement and correlation with lung function. Eur Radiol. 2011;21(4):722–729.
  • Cleveland RH, Stamoulis C, Sawicki G, et al. Brasfield and Wisconsin scoring systems have equal value as outcome assessment tools of cystic fibrosis lung disease. Pediatr Radiol. 2014;44(5):529–534.
  • Pedrosa JF, Da Cunha Ibiapina C, Alvim CG, et al. Pulmonary radiographic findings in young children with cystic fibrosis. Pediatr Radiol. 2015;45(2):153–157.
  • Greene KE, Takasugi JE, Godwin JD, et al. Radiographic changes in acute exacerbations of cystic fibrosis in adults: a pilot study. AJR Am J Roentgenol. 1994;163(3):557–562.
  • Terheggen-Lagro S, Truijens N, Van Poppel N, et al. Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol. 2003;35(6):441–445.
  • Tiddens HAWM, Rosenow T. What did we learn from two decades of chest computed tomography in cystic fibrosis? Pediatr Radiol. 2014;44(12):1490–1495.
  • Tiddens HAWM, Stick SM, Davis S. Multi-modality monitoring of cystic fibrosis lung disease: the role of chest computed tomography. Paediatr Respir Rev. 2014;15(1):92–97.
  • Kuo W, Kemner-van De Corput MPC, Perez-Rovira A, et al. Multicentre chest computed tomography standardisation in children and adolescents with cystic fibrosis: the way forward. Eur Respir J. 2016;47(6):1706–1717.
  • Linnane B, Robinson P, Ranganathan S, et al. Role of high-resolution computed tomography in the detection of early cystic fibrosis lung disease. Paediatr Respir Rev. 2008;9(3):168–175.
  • Kuo W, Ciet P, Tiddens HAWM, et al. Monitoring cystic fibrosis lung disease by computed tomography. Radiation risk in perspective. Am J Respir Crit Care Med. 2014;189(11):1328–1336.
  • Kuo W, De Bruijne M, Petersen J, et al. Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: objective airway-artery quantification. Eur Radiol. 2017;27(11):4680–4689.
  • Loeve M, Gerbrands K, Hop WC, et al. Bronchiectasis and pulmonary exacerbations in children and young adults with cystic fibrosis. Chest. 2011;140(1):178–185.
  • Loeve M, Hop WC, De Bruijne M, et al. Chest computed tomography scores are predictive of survival in patients with cystic fibrosis awaiting lung transplantation. Am J Respir Crit Care Med. 2012;185(10):1096–1103.
  • Rosenow T, Oudraad MCJ, Murray CP, et al. PRAGMA-CF. A quantitative structural lung disease computed tomography outcome in young children with cystic fibrosis. Am J Respir Crit Care Med. 2015;191(10):1158–1165.
  • Loeve M, Krestin GP, Rosenfeld M, et al. Chest computed tomography: a validated surrogate endpoint of cystic fibrosis lung disease? Eur Respir J. 2013;42(3):844–857.
  • De Jong PA, Mayo JR, Golmohammadi K, et al. Estimation of cancer mortality associated with repetitive computed tomography scanning. Am J Respir Crit Care Med. 2006;173(2):199–203.
  • Perez-Rovira A, Kuo W, Petersen J, et al. Automatic airway–artery analysis on lung CT to quantify airway wall thickening and bronchiectasis. Med Phys. 2016;43(10):5736–5744.
  • Wielpütz MO, Eichinger M, Weinheimer O, et al. Automatic airway analysis on multidetector computed tomography in cystic fibrosis: correlation with pulmonary function testing. J Thorac Imaging. 2013;28(2):104–113.
  • Salamon E, Lever S, Kuo W, et al. Spirometer guided chest imaging in children: it is worth the effort! Pediatr Pulmonol. 2017;52(1):48–56.
  • McCollough CH, Bushberg JT, Fletcher JG, et al. Answers to common questions about the use and safety of CT scans. Mayo Clin Proc. 2015;90(10):1380–1392.
  • Ernst CW, Basten IA, Ilsen B, et al. Pulmonary disease in cystic fibrosis: assessment with chest CT at chest radiography dose levels. Radiology. 2014;273(2):597–605.
  • Van Straten M, Brody AS, Ernst C, et al. Guidance for computed tomography (CT) imaging of the lungs for patients with cystic fibrosis (CF) in research studies. J Cyst Fibros. 2020;19(2):176–183.
  • Hajian B, De Backer J, Vos W, et al. Functional respiratory imaging (FRI) for optimizing therapy development and patient care. Expert Rev Respir Med. 2016;10(2):193–206.
  • Mall MA, Stahl M, Graeber SY, et al. Early detection and sensitive monitoring of CF lung disease: prospects of improved and safer imaging. Pediatr Pulmonol. 2016;51(S44):S49–S60.
  • Wielpütz MO, Eichinger M, Puderbach M. Magnetic resonance imaging of cystic fibrosis lung disease. J Thorac Imaging. 2013;28(3):151–159.
  • Wielpütz MO, Puderbach M, Kopp-Schneider A, et al. Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med. 2014;189(8):956–965.
  • Baez JC, Ciet P, Mulkern R, et al. Pediatric chest MR imaging: lung and airways. Magn Reson Imaging Clin N Am. 2015;23(2):337–349.
  • Ciet P, Tiddens HAWM, Wielopolski PA, et al. Magnetic resonance imaging in children: common problems and possible solutions for lung and airways imaging. Pediatr Radiol. 2015;45(13):1901–1915.
  • Ciet P, Serra G, Bertolo S, et al. Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT. Eur Radiol. 2016;26(3):780–787.
  • Tepper LA, Ciet P, Caudri D, et al. Validating chest MRI to detect and monitor cystic fibrosis lung disease in a pediatric cohort. Pediatr Pulmonol. 2016;51(1):34–41.
  • Failo R, Wielopolski PA, Tiddens HAWM, et al. Lung morphology assessment using MRI: a robust ultra-short TR/TE 2D steady state free precession sequence used in cystic fibrosis patients. Magn Reson Med. 2009;61(2):299–306.
  • Rajaram S, Swift AJ, Capener D, et al. Lung morphology assessment with balanced steady-state free precession MR imaging compared with CT. Radiology. 2012;263(2):569–577.
  • Dournes G, Menut F, Macey J, et al. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol. 2016;26(11):3811–3820.
  • Berger A. How does it work?: magnetic resonance imaging. BMJ. 2002;324(7328):35.
  • Woods JC, Wild JM, Wielpütz MO, et al. Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J Magn Reson Imaging. 2020;52(5):1306–1320.
  • Fain SB, Korosec FR, Holmes JH, et al. Functional lung imaging using hyperpolarized gas MRI. J Magn Reson Imaging. 2007;25(5):910–923.
  • Roos JE, McAdams HP, Kaushik SS, et al. Hyperpolarized gas MR imaging: technique and applications. Magn Reson Imaging Clin N Am. 2015;23(2):217–229.
  • Kruger SJ, Nagle SK, Couch MJ, et al. Functional imaging of the lungs with gas agents. J Magn Reson Imaging. 2016;43(2):295–315.
  • Stahl M, Wielputz MO, Graeber SY, et al. Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am J Respir Crit Care Med. 2017;195(3):349–359.
  • Deng J, Larson AC. Multishot targeted PROPELLER magnetic resonance imaging: description of the technique and initial applications. Invest Radiol. 2009;44(8):454–462.
  • Robson MD, Gatehouse PD, Bydder M, et al. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 2003;27(6):825–846.
  • Tyler DJ, Robson MD, Henkelman RM, et al. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging. 2007;25(2):279–289.
  • Roach DJ, Crémillieux Y, Fleck RJ, et al. Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease. Ann Am Thorac Soc. 2016;13(11):1923–1931.
  • Dournes G, Grodzki D, Macey J, et al. Quiet submillimeter MR imaging of the lung is feasible with a PETRA sequence at 1.5 T. Radiology. 2016;279(1):328.
  • Tiddens HAWM, Stick SM, Wild JM, et al. Respiratory tract exacerbations revisited: ventilation, inflammation, perfusion, and structure (VIPS) monitoring to redefine treatment. Pediatr Pulmonol. 2015;50(S40):S57–S65.
  • Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–1635.
  • Ciet P, Bertolo S, Ros M, et al. Detection and monitoring of lung inflammation in cystic fibrosis during respiratory tract exacerbation using diffusion-weighted magnetic resonance imaging. Eur Respir J. 2017;50(1):1601437.
  • Dournes G, Laurent F. Restricted magnetic resonance diffusion of lung consolidation is not specific for respiratory exacerbation. Eur Respir J. 2017;50(5):1701621.
  • Bauman G, Puderbach M, Heimann T, et al. Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol. 2013;82(12):2371–2377.
  • Jakob PM, Wang T, Schultz G, et al. Assessment of human pulmonary function using oxygen-enhanced T1 imaging in patients with cystic fibrosis. Magn Reson Med. 2004;51(5):1009–1016.
  • Couch MJ, Ball IK, Li T, et al. 19F MRI of the lungs using inert fluorinated gases: challenges and new developments. J Magn Reson Imaging. 2019;49(2):343–354.
  • Voskrebenzev A, Gutberlet M, Klimeš F, et al. Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients. Magn Reson Med. 2018;79(4):2306–2314.
  • Marshall H, Horsley A, Taylor CJ, et al. Detection of early subclinical lung disease in children with cystic fibrosis by lung ventilation imaging with hyperpolarised gas MRI. Thorax. 2017;72(8):760–762.
  • Smith L, Marshall H, Aldag I, et al. Longitudinal assessment of children with mild cystic fibrosis using hyperpolarized gas lung magnetic resonance imaging and lung clearance index. Am J Respir Crit Care Med. 2018;197(3):397–400.
  • Smith LJ, Collier GJ, Marshall H, et al. Patterns of regional lung physiology in cystic fibrosis using ventilation magnetic resonance imaging and multiple-breath washout. Eur Respir J. 2018;52(5):1800821.
  • Stahl M, Wielpütz MO, Ricklefs I, et al. Preventive inhalation of hypertonic saline in infants with cystic fibrosis (PRESIS). A randomized, double-blind, controlled study. Am J Respir Crit Care Med. 2019;199(10):1238–1248.
  • Rayment JH, Couch MJ, McDonald N, et al. Hyperpolarised 129Xe magnetic resonance imaging to monitor treatment response in children with cystic fibrosis. Eur Respir J. 2019;53(5):1802188.
  • National Institute for Health and Care Excellence. Cystic fibrosis: diagnosis and management. 2017. [cited 2020 Jan 2]. Available from: https://www.nice.org.uk/guidance/ng78/chapter/Recommendations