342
Views
1
CrossRef citations to date
0
Altmetric
Review

Status of inhalable antimicrobial agents for lung infection: progress and prospects

, , & ORCID Icon
Pages 1251-1270 | Received 17 Oct 2020, Accepted 16 Apr 2021, Published online: 04 May 2021

References

  • Nguyen HX. Targeted delivery of surface-modified nanoparticles: modulation of inflammation for acute lung injury. Surf Modif Nanoparticles Target Drug Deliv. 2019;12:331–353.
  • Gao W, Chen Y, Zhang Y, et al. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018;127:46–57.
  • Traini D, Young PM. Delivery of antibiotics to the respiratory tract: an update. Expert Opin Drug Deliv. 2009;6:897–905.
  • Sharma D, Goyal K. Recent approaches for novel treatment for pulmonary diseases. Int J Pulm Respir Sci. 2018;2:55593.
  • Van RSH, Bein T, Meiners S. Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J. 2014;44:765–774.
  • Pleasants RA, Hess DR. Aerosol delivery devices for obstructive lung diseases. Respir Care. 2018;63:708–733.
  • Xiong MH, Bao Y, Yang XZ, et al. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 2014;78:63–76.
  • Park C-W, Mansour HM, Hayes D Pulmonary inhalation aerosols for targeted antibiotics drug delivery. Eur Pharm Rev 2011:1. [cited 2020 Apr 29]. Available from: https://www.europeanpharmaceuticalreview.com/article/5627/pulmonary-inhalation-aerosols-for-targeted-antibiotics-drug-delivery/
  • Varshosaz J, Ghaffari S, Mirshojaei SF, et al. Biodistribution of Amikacin solid lipid nanoparticles after pulmonary delivery. Biomed Res Int. 2013;136859:1–8.
  • NIH. Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis (Non-CF BE). ClinicalTrialsGov 2018:1. [cited 2020 Dec 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT01764841
  • NIH. A randomized controlled trial of inhaled amphotericin B for maintaining remission in allergic bronchopulmonary aspergillosis. ClinicalTrialsGov 2013:1. [cited 2020 Dec 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT01857479
  • Sauberan JB, Bradley JS. Antimicrobial agents. Long SS, Fischer M, Prober CG, editors. Princ. Pract. Pediatr. Infect. Dis. Fifth. Elsevier Inc.: Amsterdam, Netherlands. 2018. 1499–1531.e3.
  • Sabet M, Miller CE, Nolan TG, et al. Efficacy of aerosol MP-376, a levofloxacin inhalation solution, in models of mouse lung infection due to Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53:3923–3928.
  • Geller DE, Flume PA, Griffith DC, et al. Pharmacokinetics and safety of MP-376 (levofloxacin inhalation solution) in cystic fibrosis subjects. Antimicrob Agents Chemother. 2011;55:2636–2640.
  • Gupta PV, Nirwane AM, Belubbi T, et al. Pulmonary delivery of synergistic combination of fluoroquinolone antibiotic complemented with proteolytic enzyme: a novel antimicrobial and antibiofilm strategy. Nanomedicine Nanotechnology, Biol Med. 2017;13:2371–2384.
  • Chorepsima S, Kechagias KS, Kalimeris G, et al. Spotlight on inhaled ciprofloxacin and its potential in the treatment of non-cystic fibrosis bronchiectasis. Drug Des Devel Ther. 2018;12:4059–4066.
  • Weers J, Tarara T EP2285345A1 - Pulmonary delivery of a fluoroquinolone - Google Patents. Eur Pat Off 2009. [cited 2020 Mar 21]. Available from: https://patents.google.com/patent/EP2285345A1/en
  • Gueders MM, Bertholet P, Perin F, et al. A novel formulation of inhaled doxycycline reduces allergen-induced inflammation, hyperresponsiveness and remodeling by matrix metalloproteinases and cytokines modulation in a mouse model of asthma. Biochem Pharmacol. 2008;75:514–526.
  • Adi H, Young PM, Chan HK, et al. Controlled release antibiotics for dry powder lung delivery. Drug Dev Ind Pharm. 2010;36:119–126.
  • Elson EC, Mermis J, Polineni D, et al. Aztreonam lysine inhalation solution in cystic fibrosis. Clin Med Insights Circ Respir Pulm Med. 2019;13:13.
  • Hansen C, Skov M. Evidence for the efficacy of aztreonam for inhalation solution in the management of Pseudomonas aeruginosa in patients with cystic fibrosis. Ther Adv Respir Dis. 2015;9:16–21.
  • Retsch-Bogart GZ, Quittner AL, Gibson RL, et al. Efficacy and safety of inhaled aztreonam lysine for airway pseudomonas in cystic fibrosis. Chest. 2009;135:1223–1232.
  • Michalopoulos A, Papadakis E. Inhaled anti-infective agents: emphasis on colistin. Infection. 2010;38:81–88.
  • Wenzler E, Fraidenburg DR, Scardina T, et al. Inhaled antibiotics for gram-negative respiratory infections. Clin Microbiol Rev. 2016;29:581–632.
  • Maiz L, Del Campo R, Castro M, et al. Maintenance treatment with inhaled ampicillin in patients with cystic fibrosis and lung infection due to methicillin-sensitive staphylococcus aureus. Arch Bronconeumol (English Ed. 2012;48:384.
  • He Y, Lawrence J, Liu C, et al. Advances in inhibitors of penicillin-binding proteins and β-lactamases as antibacterial agents. Annu Rep Med Chem. 2014;49:249–266.
  • Ferrari F, Lu Q, Girardi C, et al. Nebulized ceftazidime in experimental pneumonia caused by partially resistant Pseudomonas aeruginosa. Intensive Care Med. 2009;35:1792–1800.
  • ClinicalTrials.gov. Nebulized ceftazidime and amikacin in ventilator associated pneumonia. U S Natl Libr Med 2008. [cited 2020 Jul 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT00786305
  • Restrepo MI, Keyt H, Reyes LF. Aerosolized antibiotics. Respir Care. 2015;60:762–770.
  • Ehsan Z, Clancy JP. Management of Pseudomonas aeruginosa infection in cystic fibrosis patients using inhaled antibiotics with a focus on nebulized liposomal amikacin. Future Microbiol. 2015;10:1901–1912.
  • Chen JK, Martin-Mcnew BL, Lubsch LM. Nebulized gentamicin as an alternative to nebulized tobramycin for tracheitis in pediatric patients. J Pediatr Pharmacol Ther. 2017;22:9–14.
  • Falagas ME, Michalopoulos A, Metaxas EI. Pulmonary drug delivery systems for antimicrobial agents: facts and myths. Int J Antimicrob Agents. 2010;35:101–106.
  • Ramsey BW, Dorkin HL, Eisenberg JD, et al. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med. 1993;328:1740–1746.
  • Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med. 1999;340:23–30.
  • Coates AL, Green M, Leung K, et al. Rapid pulmonary delivery of inhaled tobramycin for pseudomonas infection in cystic fibrosis: a pilot project. Pediatr Pulmonol. 2008;43:753–759.
  • Olivier KN, Shaw PA, Glaser TS, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc. 2014;11:30–35.
  • Torres A, Motos A, Battaglini D, et al. Inhaled amikacin for severe gram-negative pulmonary infections in the intensive care unit: current status and future prospects. Crit Care. 2018;22:22.
  • FDA. FDA approves a new antibacterial drug to treat a serious lung disease using a novel pathway to spur innovation. Food Drug Adm 2018:1. [cited 2020 Sep 24]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug-treat-serious-lung-disease-using-novel-pathway-spur-innovation
  • Niederman MS, Alder J, Bassetti M, et al. Inhaled amikacin adjunctive to intravenous standard-of-care antibiotics in mechanically ventilated patients with gram-negative pneumonia (INHALE): a double-blind, randomised, placebo-controlled, phase 3, superiority trial. Lancet Infect Dis. 2020;20:330–340.
  • Soltaninejad F, Kheiri S, Habibian R, et al. Evaluation effects of nebulized gentamicin in exacerbation of chronic obstructive lung disease. J Res Med Sci. 2016;21. DOI:https://doi.org/10.4103/1735-1995.187278
  • Boisson M, Mimoz O, Hadzic M, et al. Pharmacokinetics of intravenous and nebulized gentamicin in critically ill patients. J Antimicrob Chemother. 2018;73:2830–2837.
  • Farber JE, Ross J, Summary O. The use of aerosol penicillin and streptomycin in bronchopulmonary infections. Bronchopulmonary Infect. 1950;73:214–217.
  • Miller JB, Abramson HA, Ratner B. Aerosol streptomycin treatment of advanced pulmonary tuberculosis in children. Am J Dis Child. 1950;80(2):207–237.
  • Shiehzadeh F, Hadizadeh F, Mohammadpour A, et al. Streptomycin sulfate dry powder inhalers for the new tuberculosis treatment schedule. J Drug Deliv Sci Technol. 2019;52:957–967.
  • Ahn J-M, Kassees K, Lee T-K, et al. Strategy and tactics for designing analogs: biochemical characterization of the large molecules. Chackalamannil S, Ward SE, Rotella D, editors. Compr. Med. Chem. III. Elsevier: Amsterdam, Netherlands. 2017. 66–115.
  • Abu-Salah T, Dhand R. Inhaled antibiotic therapy for ventilator-associated tracheobronchitis and ventilator-associated pneumonia: an update. Adv Ther. 2011;28:728–747.
  • Kim SW, Kuti JL, Nicolau DP. Inhaled antimicrobial therapies for respiratory infections. Curr Infect Dis Rep. 2008;10:29–36.
  • Antoniu SA, Cojocaru I. Inhaled colistin for lower respiratory tract infections. Expert Opin Drug Deliv. 2012;9:333–342.
  • Katz SL, Ho SL, Coates AL. Nebulizer choice for inhaled colistin treatment in cystic fibrosis. Chest. 2001;119:250–255.
  • Byrne NM, Keavey PM, Perry JD, et al. Comparison of lung deposition of colomycin using the Halolite and the Pari LC Plus nebulisers in patients with cystic fibrosis. Arch Dis Child. 2003;88:715–718.
  • Lin YW, Zhou Q, Onufrak NJ, et al. Aerosolized polymyxin B for treatment of respiratory tract infections: determination of pharmacokinetic-pharmacodynamic indices for aerosolized polymyxin B against Pseudomonas aeruginosa in a mouse lung infection model. Antimicrob Agents Chemother. 2017;61.
  • Pereira GH, Muller PR, Levin AS. Salvage treatment of pneumonia and initial treatment of tracheobronchitis caused by multidrug-resistant gram-negative bacilli with inhaled polymyxin B. Diagn Microbiol Infect Dis. 2007;58:235–240.
  • Parniak MA, Vergis EN, Abram ME. Antiviral agents. Laurent GJ, Shapiro SD, editors. Encycl. respir. med. four-volume set. Elsevier Inc.: Amsterdam, Netherlands. 2006. 129–134.
  • Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30:277–319.
  • UCSF. Guidelines for use of inhaled ribavirin. Infect Dis Manag Progr UCSF 2015:1. [cited 2020 Sep 24]. Available from: https://idmp.ucsf.edu/guidelines-use-inhaled-ribavirin
  • Dumont EF, Oliver AJ, Ioannou C, et al. A novel inhaled dry-powder formulation of ribavirin allows for efficient lung delivery in healthy participants and those with chronic obstructive pulmonary disease in a phase 1 study. Antimicrob Agents Chemother. 2020;64:e02267–19.
  • LaForce C, Man CY, Henderson FW, et al. Efficacy and safety of inhaled zanamivir in the prevention of influenza in community-dwelling, high-risk adult and adolescent subjects: a 28-day, multicenter, randomized, double-blind, placebo-controlled trial. Clin Ther. 2007;29:1579–1590.
  • Anekthananon T, Pukritayakamee S, Ratanasuwan W, et al. Oseltamivir and inhaled zanamivir as influenza prophylaxis in Thai health workers: a randomized, double-blind, placebo-controlled safety trial over 16 weeks. J Antimicrob Chemother. 2013;68:697–707.
  • Ison MG, Hayden FG. Antiviral agents against respiratory viruses. Cohen J, Opal SM, Powderly WG, editors. Infect. Dis. (Auckl). Fourth. Elsevier: Amsterdam, Netherlands. 2017. 1318–1326.e2.
  • FDA. Relenza (zanamivir) information. U S Food Drug Adm 2018:1. [cited 2020 Sep 25]. Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/relenza-zanamivir-information
  • Shoham S, Groll AH, Petraitis V, et al. Systemic antifungal agents. Cohen J, Opal SM, Powderly WG, editors. Infect. Dis. (Auckl). Fourth. Elsevier Ltd: Amsterdam, Netherlands. 2017. 1333–1344.e4.
  • Wlaz P, Knaga S, Kasperek K, et al. Activity and safety of inhaled itraconazole nanosuspension in a model pulmonary aspergillus fumigatus infection in inoculated young quails. Mycopathologia. 2015;180:35–42.
  • Nessel J Itraconazole inhalation receives IND approval for phase 2 clinical trial. Pharm Times 2019:1. [cited 2020 May 21]. Available from: https://www.pharmacytimes.com/resource-centers/asthma/itraconazole-inhalation-receives-ind-approval-for-phase-2-clinical-trial
  • Park B Inhaled itraconazole fast-tracked for allergic bronchopulmonary aspergillosis in asthma. MPR News 2020:1. [cited 2020 Sepr 17]. Available from: https://www.empr.com/home/news/drugs-in-the-pipeline/inhaled-itraconazole-fast-tracked-for-allergic-bronchopulmonary-aspergillosis-in-asthma/
  • Liao Q, Yip L, Chow MYT, et al. Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. Int J Pharm. 2019;560:144–154.
  • Hanada S, Uruga H, Takaya H, et al. Nebulized liposomal amphotericin B for treating aspergillus empyema with bronchopleural fistula. Am J Respir Crit Care Med. 2014;189:607–608.
  • Mattes G TFF pharmaceuticals announces initiation of phase 1 clinical trial of voriconazole inhalation powder, to treat invasive pulmonary aspergillosis (IPA). BioSpace 2019. [cited 2020 Jul 24]. Available from: https://www.biospace.com/article/tff-pharmaceuticals-announces-initiation-of-phase-1-clinical-trial-of-voriconazole-inhalation-powder-to-treat-invasive-pulmonary-aspergillosis-ipa-/
  • Mattes G TFF pharmaceuticals announces completion of dosing for voriconazole inhalation powder phase 1 clinical trial. Bus Wire 2020. [cited 2020 Sep 09]. Available from: https://www.businesswire.com/news/home/20200730005563/en/TFF-Pharmaceuticals-Announces-Completion-Dosing-Voriconazole-Inhalation
  • Faustino C, Pinheiro L. Lipid systems for the delivery of amphotericin B in antifungal therapy. Pharmaceutics. 2020;12:1–47.
  • Kirkpatrick WR, Lk N, Ac V, et al. Prophylactic efficacy of single dose pulmonary administration of amphotericin B inhalation powder in a guinea pig model of invasive pulmonary aspergillosis. J Antimicrob Chemother. 2012;67:970–976.
  • Wong-Beringer A, Lambros MP, Beringer PM, et al. Suitability of caspofungin for aerosol delivery: physicochemical profiling and nebulizer choice. Chest. 2005;128:3711–3716.
  • Ryckman DM, Yu IG Caspofungin compositions for inhalation. US2019/0307837 A1, 2019.
  • Viscardi RM, Terrin ML, Magder LS, et al. Randomised trial of azithromycin to eradicate Ureaplasma in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2020;105:615–622.
  • Yanagihara K, Tomono K, Sawai T, et al. Efficacy of erythromycin inhalation in chronic respiratory infection caused by Pseudomonas aeruginosa. Kansenshogaku Zasshi. 1997;71:337–341.
  • Mangal S, Nie H, Xu R, et al. Physico-chemical properties, aerosolization and dissolution of co-spray dried azithromycin particles with L-leucine for inhalation. Pharm Res. 2018;35(2):1–15.
  • Siekmeier R, Hofmann T, Scheuch G. Inhalation of macrolides: a novel approach to treatment of pulmonary infections. Adv Exp Med Biol. 2015;839:13–24.
  • Ramanathan MR, Howell CK, Sanders JM. Drugs in tuberculosis and leprosy. Side Eff Drugs Annu. 2018;40:363–376.
  • Dharmadhikari AS, Kabadi M, Gerety B, et al. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57:2613–2619.
  • Parikh R, Dalwadi S, Aboti P, et al. Inhaled microparticles of antitubercular antibiotic for in vitro and in vivo alveolar macrophage targeting and activation of phagocytosis. J Antibiot (Tokyo). 2014;67:387–394.
  • Omar SM, Maziad NA, El-Tantawy NM. Pulmonary delivery of isoniazid in nanogel-loaded chitosan hybrid microparticles for inhalation. J Aerosol Med Pulm Drug Deliv. 2019;32:78–87.
  • Miki K, Yokota S, Hiraga T, et al. Effectiveness of isoniazid inhalation in patients with endobronchial tuberculosis. Nihon Kokyuki Gakkai Zasshi. 1999;37:31–35.
  • Starke JR. Mycobacterium tuberculosis. In: Long SS, editor. Princ. Pract. Pediatr. Infect. Dis. Fourth. Amsterdam, Netherlands: Elsevier Inc.; 2012. p. 771–786.e6.
  • Verma S, Kaplowitz N. Hepatotoxicity of antitubercular drugs. Kaplowitz N, DeLeve LD, editors. Drug-Induced Liver Dis. Third. Elsevier Inc.: Amsterdam, Netherlands. 2013. 483–504.
  • Pham DD, Gregoire N, Couet W, et al. Pulmonary delivery of pyrazinamide-loaded large porous particles. Eur J Pharm Biopharm. 2015;94:241–250.
  • Rawal T, Kremer L, Halloum I, et al. Dry-powder inhaler formulation of rifampicin: an improved targeted delivery system for alveolar tuberculosis. J Aerosol Med Pulm Drug Deliv. 2017;30:388–398.
  • Garcia Contreras L, Sung J, Ibrahim M, et al. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment: insight into rifampicin absorption from the lungs of guinea pigs. Mol Pharm. 2015;12:2642–2650.
  • Srichana T, Ratanajamit C, Juthong S, et al. Evaluation of proinflammatory cytokines and adverse events in healthy volunteers upon inhalation of antituberculosis drugs. Biol Pharm Bull. 2016;39:1815–1822.
  • Pai RV, Jain RR, Bannalikar AS, et al. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. J Aerosol Med Pulm Drug Deliv. 2016;29:179–195.
  • Donald PR, McIlleron H. Antituberculosis drugs. Schaaf HS, Zumla AI, editors. Tuberculosis. Elsevier Inc.: Amsterdam, Netherlands. 2009. 608–617.
  • Wallace RJ, Philley JV, Griffith DE. Antimycobacterial agents. In: editors. Bennett JE, Blaser MJ, Dolin R, Mand. Douglas, Bennett’s Princ. Pract. Infect. Dis. Vol. 1. Amsterdam, Netherlands: Elsevier Inc.;2014. 463–478. Eight
  • Ranjan R, Srivastava A, Bharti R, et al. Preclinical development of inhalable D-cycloserine and ethionamide to overcome pharmacokinetic interaction and enhance efficacy against mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63:1–6.
  • Debnath SK, Saisivam S, Debnath M, et al. Development and evaluation of chitosan nanoparticles based dry powder inhalation formulations of prothionamide. PLoS One. 2018;13:1–12.
  • Debnath SK, Srinivasan S, Debnath M. Development of Dry Powder Inhaler Containing Prothionamide-PLGA Nanoparticles Optimized Through Statistical Design: in-vivo Study. Open Nanomed J. 2017;4:30–40.
  • Debnath SK, Saisivam S, Omri A. PLGA ethionamide nanoparticles for pulmonary delivery: development and in vivo evaluation of dry powder inhaler. J Pharm Biomed Anal. 2017;145:854–859.
  • Debnath SK, Saisivam S, Validated DM. UV-Spectrophotometric method for the ethionamide estimation in bulk, tablet and nanoparticles. Int J Drug Dev Reserach. 2017;9:20–23.
  • Salomon JJ, Galeron P, Schulte N, et al. Biopharmaceutical in vitro characterization of CPZEN-45, a drug candidate for inhalation therapy of tuberculosis. Ther Deliv. 2013;4:915–923.
  • Pitner RA, Durham PG, Stewart IE, et al. A spray-dried combination of capreomycin and CPZEN-45 for inhaled tuberculosis therapy. J Pharm Sci. 2019;108:3302–3311.
  • Ortiz M, Jornada DS, Pohlmann AR, et al. Development of novel chitosan microcapsules for pulmonary delivery of dapsone: characterization, aerosol performance, and in vivo toxicity evaluation. AAPS PharmSciTech. 2015;16:1033–1040.
  • Chougule M, Padhi B, Misra A. Development of spray dried liposomal dry powder inhaler of dapsone. AAPS PharmSciTech. 2008;9:47–53.
  • Brunaugh AD, Jan SU, Ferrati S, et al. Excipient-free pulmonary delivery and macrophage targeting of clofazimine via air jet micronization. Mol Pharm. 2017;14:4019–4031.
  • Banaschewski B, Verma D, Pennings LJ, et al. Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. J Cyst Fibros. 2019;18:714–720.
  • Stacey JW. The inhalation of nebulized solutions of sulfonamides in the treatment of bronchiectasis. Dis Chest. 1943;9:302–306.
  • Dijkmans AC, Nvo Z, Burggraaf J, et al. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics. 2017;6:6.
  • ClinicalTrials.gov. Study evaluating fosfomycin/tobramycin for inhalation in cystic fibrosis patients with Pseudomonas aeruginosa lung infection. U S Natl Libr Med 2013. [cited 2020 Jul 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT00794586?cond=Fosfomycin%2F+Tobramycin&draw=2&rank=1
  • Trapnell BC, McColley SA, Ker DG, et al. Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with Pseudomonas airway infection. Am J Respir Crit Care Med. 2012;185:171–178.
  • Kollef MH, Ricard JD, Roux D, et al. A randomized trial of the amikacin fosfomycin inhalation system for the adjunctive therapy of gram-negative ventilator-associated pneumonia: IASIS trial. Chest. 2017;151:1239–1246.
  • Maselli DJ, Keyt H, Restrepo MI. Inhaled antibiotic therapy in chronic respiratory diseases. Int J Mol Sci. 2017;18:1062.
  • Sullivan BP, El-Gendy N, Kuehl C, et al. Pulmonary delivery of vancomycin dry powder aerosol to intubated rabbits. Mol Pharm. 2015;12:2665–2674.
  • Jennings MT, Boyle MP, Weaver D, et al. Eradication strategy for persistent methicillin-resistant Staphylococcus aureus infection in individuals with cystic fibrosis-the PMEP trial: study protocol for a randomized controlled trial. Trials. 2014;15:223.
  • Patil JS, Sarasija S. Pulmonary drug delivery strategies: a concise, systematic review. Lung India. 2012;29:44–49.
  • Alexander A, Agrawal M, Bhupal Chougule M, et al. Nose-to-brain drug delivery: an alternative approach for effective brain drug targeting. an alternative approach for effective brain drug targeting. In: Shegokar R, editor. Nanopharmaceuticals Expect. Realities Multifunct. Drug Deliv. Syst. Vol. 1. Amsterdam, Netherlands: Elsevier; 2020. p. 175–200.
  • Desprez I, Boyer C, Servely JL, et al. Assessment of the respiratory tract distribution of fluorescein by nebulization in rats (Rattus norvegicus). J Exot Pet Med. 2019;30:30–36.
  • Dolovich MB, Kuttler A, Dimke TJ, et al. Biophysical model to predict lung delivery from a dual bronchodilator dry-powder inhaler. Int J Pharm X. 2019;1:100018.
  • Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–570.
  • Schreier H, Gonzalez-Rothi RJ, Stecenko AA. Pulmonary delivery of liposomes. J Control Release. 1993;24:209–223.
  • Jean Tyrrell RT. Gaining the upper hand on pulmonary drug delivery. J Pharmacovigil. 2014;02:118.
  • Tiddens HAWM, Bos AC, Mouton JW, et al. Inhaled antibiotics: dry or wet? Eur Respir J. 2014;44:1308–1318.
  • Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Med Devices Evidence Res. 2015;8:131–139.
  • Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics. 2019;11:113.
  • El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano- and microparticles for drug delivery. Glob Cardiol Sci Pract. 2015;2015:2.
  • Michalopoulos A, Metaxas EI, Falagas ME. Aerosol delivery of antimicrobial agents during mechanical ventilation: current practice and perspectives. Curr Drug Deliv. 2018;30:208–212.
  • Dalby R, Spallek M, Voshaar T. A review of the development of Respimat® Soft MistTM Inhaler. Int J Pharm. 2004;283:1–9.
  • Lavorini F, Pistolesi M, Usmani OS. Recent advances in capsule-based dry powder inhaler technology. Multidiscip Respir Med. 2017;12:11.
  • Dalby RN, Eicher J, Zierenberg B. Development of Respimat® soft mistTM inhaler and its clinical utility in respiratory disorders. Med Devices Evidence Res. 2011;4:145.
  • Chandel A, Goyal AK, Ghosh G, et al. Recent advances in aerosolised drug delivery. Biomed Pharmacother. 2019;112:108601.
  • Cazzola M, Cavalli F, Usmani OS, et al. Advances in pulmonary drug delivery devices for the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Deliv. 2020;17:635–646.
  • Chrystyn H, Price D. Not all asthma inhalers are the same: factors to consider when prescribing an inhaler. Prim Care Respir J. 2009;18:243–249.
  • Biswas R, Hanania NA, Sabharwal A. Factors determining in vitro lung deposition of albuterol aerosol delivered by ventolin metered-dose inhaler. J Aerosol Med Pulm Drug Deliv. 2017;30:256–266.
  • Haidl P, Heindl S, Siemon K, et al. Inhalation device requirements for patients’ inhalation maneuvers. Respir Med. 2016;118:65–75.
  • Leach C. Effect of formulation parameters on hydrofluoroalkane-beclomethasone dipropionate drug deposition in humans. J Allergy Clin Immunol. 1999;104:104.
  • Azouz W, Campbell J, Stephenson J, et al. Improved metered dose inhaler technique when a coordination cap is used. J Aerosol Med Pulm Drug Deliv. 2014;27:193–199.
  • Ammari WG, Al-Hyari N, Obeidat N, et al. Mastery of pMDI technique, asthma control and quality-of-life of children with asthma: a randomized controlled study comparing two inhaler technique training approaches. Pulm Pharmacol Ther. 2017;43:46–54.
  • Hamishehkar H, Rahimpour Y, Javadzadeh Y. The role of carrier in dry powder inhaler. Sezer AD, editor. Recent Adv. Nov. drug Carr. Syst. IntechOpen: Turkey. 2012. 39–66. DOI:https://doi.org/10.5772/51209
  • Weers J. Inhaled antimicrobial therapy-barriers to effective treatment. Adv Drug Deliv Rev. 2015;85:24–43.
  • Zhou Q (Tony), Morton DAV, Yu HH, et al. Colistin powders with high aerosolisation efficiency for respiratory infection: preparation and in vitro evaluation. J Pharm Sci. 2013;102:3736–3747.
  • Duret C, Wauthoz N, Sebti T, et al. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Int J Nanomedicine. 2012;7:5475–5489.
  • Chan JGY, Wong J, Zhou QT, et al. Advances in device and formulation technologies for pulmonary drug delivery. AAPS PharmSciTech. 2014;15:882–897.
  • Laube BL, Janssens HM, Fhc DJ, et al. What the pulmonary specialist should know about the new inhalation therapies. Eur Respir J. 2011;37:1308–1331.
  • Geller DE, Coates AL. Drug administration by inhalation in children. In: Wilmott RW, Bush A, Deterding RR, et al., editors. Kendig Chernick’s Disord. Respir. tract Child. 8th. Amsterdam, Netherlands: Elsevier Inc.; 2012. p. 284–298.
  • Dhand R. Inhaled drug therapy 2016: the year in review. Respir Care. 2017;62(7):978–996.
  • Lavorini F, Pistolesi M, Usmani OS. Erratum: recent advances in capsule-based dry powder inhaler technology. Multidiscip Respir Med. 2017;12. DOI:https://doi.org/10.1186/s40248-017-0100-9
  • Mahler DA. Peak inspiratory flow rate as a criterion for dry powder inhaler use in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2017;14:1103–1107.
  • Ghosh S, Ohar JA, Drummond MB. Peak inspiratory flow rate in chronic obstructive pulmonary disease: implications for dry powder inhalers. J Aerosol Med Pulm Drug Deliv. 2017;30:381–387.
  • Mahler DA. The role of inspiratory flow in selection and use of inhaled therapy for patients with chronic obstructive pulmonary disease. Respir Med. 2020;161:105857.
  • Borgstrom L, Bondesson E, Moren F, et al. Lung deposition of budesonide inhaled via Turbuhaler®: a comparison with terbutaline sulphate in normal subjects. Eur Respir J. 1994;7:69–73.
  • Elphick M, Von Hollen D, Pritchard JN, et al. Factors to consider when selecting a nebulizer for a new inhaled drug product development program. Expert Opin Drug Deliv. 2015;12:1375–1387.
  • De PE, Fernandez-garcia R, Ballesteros MP, et al. Nebulised antibiotherapy: conventional versus nanotechnology-based approaches, is targeting at a nano scale a difficult subject? Ann Transl Med. 2017;5:1–16.
  • Rello J, Rouby JJ, Sole-lleonart C, et al. Key conceptional considerations on nebulization of antimicrobial agents to mechanically ventilated patients. Clin Microbiol Infect. 2017;23:640–646.
  • Tellier R, Li Y, Cowling BJ, et al. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis. 2019;19:101.
  • Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc. 2014;11:425–434.
  • Dennis JH, Pieron CA. Inhaled antibiotic therapy in evidence: what delivery device? J Cyst Fibros. 2002;1:209–214.
  • Zarogoulidis P, Kioumis I, Porpodis K, et al. Clinical experimentation with aerosol antibiotics: current and future methods of administration. Drug Des Devel Ther. 2013;7:1115–1134.
  • Hickey AJ, Lu D, Ashley ED, et al. Inhaled azithromycin therapy. J Aerosol Med Depos Clear Eff Lung. 2006;19:54–60.
  • Prince M The 5 best nebulizers- Updated for 2019. RehabMart Caregiv Univ 2019:1. [cited 2021 Mar 23]. Available from: https://www.rehabmart.com/post/the-5-best-nebulizers
  • Drugtimes. Recent advances in nebulizer technology- drug formulation design. Drug Time 2020:1. [cited 2021 Mar 23]. Available from: https://www.drugtimes.org/formulation-design/recent-advances-in-nebulizer-technology.html
  • Rudokas M, Najlah M, Alhnan MA, et al. Liposome delivery systems for inhalation: a critical review highlighting formulation Issues and anticancer applications. Med Princ Pract. 2016;25:60–72.
  • Cipolla D, Chan HK. Inhaled antibiotics to treat lung infection. Pharm Pat Anal. 2013;2:647–663.
  • Hochrainer D, Holz H, Kreher C, et al. Comparison of the aerosol velocity and spray duration of Respimat® Soft MistTM inhaler and pressurized metered dose inhalers. J Aerosol Med Depos Clear Eff Lung. 2005;18:273–282.
  • Brand P, Hederer B, Austen G, et al. Higher lung deposition with Respimat® Soft MistTM Inhaler than HFA-MDI in COPD patients with poor technique. Int J Chron Obstruct Pulmon Dis. 2008;3:763–770.
  • Carpenter DM, Roberts CA, Sage AJ, et al. A review of electronic devices to assess inhaler technique. Curr Allergy Asthma Repiratory. 2017;17:17.
  • Kikidis D, Konstantinos V, Tzovaras D, et al. The digital asthma patient: the history and future of inhaler based health monitoring devices. J Aerosol Med Pulm Drug Deliv. 2016;29:219–232.
  • Sulaiman I, Greene G, MacHale E, et al. A randomised clinical trial of feedback on inhaler adherence and technique in patients with severe uncontrolled asthma. Eur Respir J. 2018;51:1701126.
  • Mabilat C, Gros MF, Nicolau D, et al. Diagnostic and medical needs for therapeutic drug monitoring of antibiotics. Eur J Clin Microbiol Infect Dis. 2020;39:791–797.
  • Littlewood KJ, Higashi K, Jansen JP, et al. A network meta-analysis of the efficacy of inhaled antibiotics for chronic Pseudomonas infections in cystic fibrosis. J Cyst Fibros. 2012;11:419–426.
  • Cazzola M, Blasi F, Terzano C, et al. Delivering antibacterials to the lungs: considerations for optimizing outcomes. Am J Respir Med. 2002;1:261–272.
  • Dalhoff A, Stubbings W, Schubert S. Comparative in vitro activities of the novel antibacterial finafloxacin against selected gram-positive and gram-negative bacteria tested in Mueller-Hinton broth and synthetic urine. Antimicrob Agents Chemother. 2011;55:1814–1818.
  • Imberti R, Iotti GA, Cusato M, et al. Colistin penetration in the alveolar lining fluid of critically ill patients treated with IV colistimethate sodium: response. Chest. 2011;139:233–234.
  • Dalhoff A, Schubert S, Ullmann U. Effect of pH on the in vitro activity of and propensity for emergence of resistance to fluoroquinolones, macrolides, and a ketolide. Infect Suppl. 2005;33:36–43.
  • Stewart SD, Allen S. Antibiotic use in critical illness. J Vet Emerg Crit Care. 2019;29:227–238.
  • Noble CG, Barnard FM, Maxwell A. Quinolone-DNA interaction: sequence-dependent binding to single-stranded DNA reflects the interaction within the gyrase-DNA complex. Antimicrob Agents Chemother. 2003;47:854–862.
  • Dalhoff A. Pharmacokinetics and pharmacodynamics of aerosolized antibacterial agents in chronically infected cystic fibrosis patients. Clin Microbiol Rev. 2014;27:753–782.
  • Teirlinck E, Samal SK, Coenye T, et al. Penetrating the bacterial biofilm: challenges for antimicrobial treatment. Boukherroub R, Drider D, Szunerits S, editors. Funct. nanomater. manag. microb. infect. a strateg. to address microb. drug resist. Elsevier Inc: Amsterdam, Netherlands. 2017. 49–76.
  • Kirby AE, Garner K, Levin BR. The relative contributions of physical structure and cell density to the antibiotic susceptibility of bacteria in biofilms. Antimicrob Agents Chemother. 2012;56:2967–2975.
  • Olsson B, Bondesson E, Borgstrom L, et al. Pulmonary drug metabolism, clearance, and absorption. In: Smyth HDC, Hickey AJ, et al., editors. Control. pulm. drug deliv. New York, NY: Springer; 2011. p. 21. DOI:https://doi.org/10.1007/978-1-4419-9745-6
  • Chrystyn H. Methods to identify drug deposition in the lungs following inhalation. Br J Clin Pharmacol. 2001;51:289–299.
  • Niederman MS. Adjunctive nebulized antibiotics: what is their place in ICU infections? Front Med. 2019;6:1–8.
  • Farkas D, Hindle M, Bonasera S, et al. Development of an inline dry powder inhaler for oral or trans-nasal aerosol administration to children. J Aerosol Med Pulm Drug Deliv. 2020;33:83–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.