316
Views
4
CrossRef citations to date
0
Altmetric
Review

Novel therapeutic approaches targeting endotypes of severe airway disease

, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1303-1316 | Received 18 Mar 2021, Accepted 28 May 2021, Published online: 09 Jun 2021

References

  • Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43:343–373. .
  • Fokkens WJ, Lund VJ, Hopkins C, et al., European position paper on Rhinosinusitis and nasal polyps 2020. Rhinology. 58(Suppl S29): 1–464. 2020. .
  • Licari A, Castagnoli R, Denicolò CF, et al. The nose and the lung: united airway disease? Front Pediatr. 2017;5:44.
  • Licari A, Castagnoli R, De Filippo M, et al. Current and emerging biologic therapies for allergic rhinitis and chronic rhinosinusitis. Expert Opin Biol Ther. 2020;20(6):609–619. .
  • Licari A, Brambilla I, Marseglia A, et al. Difficult vs. severe asthma: definition and limits of asthma control in the pediatric population. Front Pediatr. 2018;6:170.
  • Lang DM. Severe asthma: epidemiology, burden of illness, and heterogeneity. Allergy Asthma Proc. 2015;36(6):418–424.
  • Pijnenburg MW, Fleming L. Advances in understanding and reducing the burden of severe asthma in children. Lancet Respir Med. 2020;8(10):1032–1044.
  • DeConde AS, Soler ZM. Chronic rhinosinusitis: epidemiology and burden of disease. Am J Rhinol Allergy. 2016;30(2):134–139.
  • Ciprandi G, Schiavetti I, Rindone E, et al. The impact of anxiety and depression on outpatients with asthma. Ann Allergy Asthma Immunol. 2015;115(5):408–414.
  • Licari A, Ciprandi R, Marseglia G, et al. Anxiety and depression in adolescents with severe asthma and in their parents: preliminary results after 1 year of treatment. Behav Sci (Basel). 2019;9(7):78.
  • Shin JH, Roh D, Lee DH, et al. Allergic rhinitis and rhinosinusitis synergistically compromise the mental health and health-related quality of life of Korean adults: a nationwide population-based survey. PLoS One. 2018;13(1):e0191115.
  • Epperson MV, McCann AC, Phillips KM, et al. Unbiased Measure of General Quality of Life in Chronic Rhinosinusitis Reveals Disease Modifiers. Laryngoscope. 2021;131(6):1206–1211
  • Erskine SE, Hopkins C, Clark A, et al. Chronic rhinosinusitis and mood disturbance. Rhinology. 2017;55(2):113–119.
  • Chung KF, Adcock IM. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy. 2019;74(9):1649–1659.
  • Lou H, Wang C, Zhang L. Endotype-driven precision medicine in chronic rhinosinusitis. Expert Rev Clin Immunol. 2019;15(11):1171–1183.
  • Licari A, Castagnoli R, Brambilla I, et al. Asthma endotyping and biomarkers in childhood asthma. Pediatr Allergy Immunol Pulmonol. 2018;31(2):44–55.
  • Agache I. Severe asthma phenotypes and endotypes. Semin Immunol. 2019;46:101301.
  • Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1–12.
  • Bachert C, Akdis CA. Phenotypes and emerging endotypes of chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2016;4(4):621–628.
  • Agustí A, Bafadhel M, Beasley R, et al. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J. 2017;50(4):1701655.
  • Castagnoli R, Marseglia A, Brambilla I, et al. Severe uncontrolled asthma in children: practical approach on diagnosis and management. Minerva Pediatr. 2020;72(3):196–205.
  • Diamant Z, Vijverberg S, Alving K, et al. Toward clinically applicable biomarkers for asthma: an EAACI position paper. Allergy. 2019;74(10):1835–1851.
  • Workman AD, Kohanski MA, Cohen NA. Biomarkers in Chronic Rhinosinusitis with Nasal Polyps. Immunol Allergy Clin North Am. 2018;38(4):679–692.
  • Castagnoli R, Licari A, Manti S, et al. Type-2 inflammatory mediators as targets for precision medicine in children. Pediatr Allergy Immunol. 2020;31(Suppl 26):17–19.
  • Licari A, Castagnoli R, Brambilla I, et al. New approaches for identifying and testing potential new anti-asthma agents. Expert Opin Drug Discov. 2018;13(1):51–63.
  • Licari A, Manti S, Castagnoli R. Immunomodulation in pediatric asthma. Front Pediatr. 2019;7:289.
  • Licari A, Manti S, Castagnoli R, et al. Measuring inflammation in paediatric severe asthma: biomarkers in clinical practice. Breathe (Sheff). 2020;16(1):190301.
  • Bakakos A, Loukides S, Usmani OS, et al. Biologics in severe asthma: the overlap endotype - opportunities and challenges. Expert Opin Biol Ther. 2020;20(12):1427–1434.
  • Bachert C, Zhang N, Cavaliere C, et al. Biologics for chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2020;145(3):725–739.
  • GINA guidelines. Adolescents and adults with difficult to treat and severe asthma. [cited 2021 Jan 28]. Available at:www.ginaasthma.org.
  • Holguin F, Cardet JC, Chung KF, et al. Management of severe asthma: a European respiratory society/American thoracic society guideline. Eur Respir J. 2020;55(1):1900588.
  • Cloutier MM, Dixon AE, Krishnan JA, et al. Managing asthma in adolescents and adults: 2020 asthma guideline update from the national asthma education and prevention program. JAMA. 2020;324(22):2301–2317.
  • Akar-Ghibril N, Casale T, Custovic A, et al. Allergic endotypes and phenotypes of asthma. J Allergy Clin Immunol Pract. 2020;8(2):429–440.
  • Assaf SM, Hanania NA. Biological treatments for severe asthma. Curr Opin Allergy Clin Immunol. 2019;19(4):379–386.
  • Svenningsen S, Nair P. Asthma endotypes and an overview of targeted therapy for asthma. Front Med (Lausanne). 2017;4:158.
  • Fitzpatrick AM, Moore WC. Severe asthma phenotypes - how should they guide evaluation and treatment? J Allergy Clin Immunol Pract. 2017;5(4):901–908.
  • Pavord ID, Hilvering B, Shrimanker R. Emerging biologics in severe asthma. Immunol Allergy Clin North Am. 2016;36(3):609–623.
  • Narendra D, Blixt J, Hanania NA. Immunological biomarkers in severe asthma. Semin Immunol. 2019 Dec;46:101332.
  • Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med. 2010;181(4):315–323.
  • Esteban-Gorgojo I, Antolín-Amérigo D, Domínguez-Ortega J, et al. Non-eosinophilic asthma: current perspectives. J Asthma Allergy. 2018;11:267–281.
  • Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–224.
  • Lefaudeux D, De Meulder B, Loza MJ, et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2017;139(6):1797–1807. .
  • Guilbert TW, Mauger DT, Lemanske RF. Childhood asthma-predictive phenotype. J Allergy Clin Immunol Pract. 2014;2(6):664–670.
  • Garcia-Aymerich J, Benet M, Saeys Y, et al. Phenotyping asthma, rhinitis and eczema in MeDALL population-based birth cohorts: an allergic comorbidity cluster. Allergy. 2015;70(8):973–984.
  • Howrylak J, Fuhlbrigge A, Strunk R, et al. Classification of childhood asthma phenotypes and long-term clinical responses to inhaled anti-inflammatory medications. J Allergy Clin Immunol. 2014;133(5):1289–300, 1300.e1-12.
  • Schatz M, Hsu JW, Zeiger RS, et al. Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. J Allergy Clin Immunol. 2014;133(6):1549–1556. .
  • Depner M, Fuchs O, Genuneit J, et al. Clinical and epidemiologic phenotypes of childhood asthma. Am J Respir Crit Care Med. 2014;189(2):129–138.
  • Fitzpatrick AM, Teague WG, Meyers DA, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the national institutes of health/national heart, lung, and blood institute severe asthma research program. J Allergy Clin Immunol. 2011;127(2):382–389.e1-13.
  • Fitzpatrick AM, Higgins M, Holguin F, et al. National institutes of health/national heart, lung, and blood institute’s severe asthma research program. The molecular phenotype of severe asthma in children. J Allergy Clin Immunol. 2010;125(4):851–857.e18.
  • Just J, Gouvis-Echraghi R, Rouve S, et al. Two novel, severe asthma phenotypes identified during childhood using a clustering approach. Eur Respir J. 2012;40(1):55–60.
  • Fainardi V, Saglani S. The need to differentiate between adults and children when treating severe asthma. Expert Rev Respir Med. 2015;9(4):419–428.
  • Teague WG, Phillips BR, Fahy JV, et al. Baseline Features of the Severe Asthma Research Program (SARP III) cohort: differences with age. J Allergy Clin Immunol Pract. 2018;6(2):545–554.e4.
  • Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001–1008.
  • Fahy JV. Type 2 inflammation in asthma-present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65.
  • Jackson DJ, Busby J, Pfeffer PE, et al. UK severe asthma registry. Characterisation of patients with severe asthma in the UK severe asthma registry in the biologic era. Thorax. 2021;76(3):220–227.
  • Kuo CHS, Pavlidis S, Loza M, et al. Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics. Eur Respir J. 2017;49(2):1602135.
  • Papi A, Saetta M, Fabbri L. Severe asthma: phenotyping to endotyping or vice versa? Eur Respir J. 2017;49(2):1700053.
  • Bailey LN, Garcia JAP, Grayson JW. Chronic rhinosinusitis: phenotypes and endotypes. Curr Opin Allergy Clin Immunol. 2021;21(1):24–29.
  • Pauwels B, Jonstam K, Bachert C. Emerging biologics for the treatment of chronic rhinosinusitis. Expert Rev Clin Immunol. 2015;11(3):349–361.
  • De Greve G, Hellings PW, Fokkens WJ, et al. Endotype-driven treatment in chronic upper airway diseases. Clin Transl Allergy. 2017;7:22.
  • Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: focus on nasal polyposis. J Allergy Clin Immunol. 2015;136(6):1431–1440.
  • Castagnoli R, Licari A, Brambilla I, et al., An update on the role of chronic rhinosinusitis with nasal polyps as a comorbidity in severe asthma. Expert Rev Respir Med. 14(12): 1197–1205. 2020.
  • Bachert C, Marple B, Hosemann W, et al. Endotypes of chronic rhinosinusitis with nasal polyps: pathology and possible therapeutic implications. J Allergy Clin Immunol Pract. 2020;8(5):1514–1519.
  • Bayar Muluk N, Cingi C, Scadding GK, et al. Chronic rhinosinusitis-could phenotyping or endotyping aid therapy? Am J Rhinol Allergy. 2019;33(1):83–93.
  • Bachert C, Han JK, Wagenmann M, et al. EUFOREA expert board meeting on uncontrolled severe Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) and biologics: definitions and management. J Allergy Clin Immunol. 2020 Nov 20;S0091-6749(20):31629.
  • Chaaban MR, Walsh EM, Woodworth BA. Epidemiology and differential diagnosisof nasal polyps. Am J Rhinol Allergy. 2013;27(6):473–478.
  • Caimmi D, Matti E, Pelizzo G, et al. Nasal polyposis in children. J Biol Regul Homeost Agents. 2012;26(1 Suppl):S77–83.
  • Licari A, Brambilla I, De Filippo M, et al. The role of upper airway pathology as a co-morbidity in severe asthma. Expert Rev Respir Med. 2017;11(11):855–865.
  • Lin DC, Chandra RK, Tan BK, et al. Association between severity of asthma and degree of chronic rhinosinusitis. Am J Rhinol Allergy. 2011;25(4):205–208.
  • Shaw DE, Sousa AR, Fowler SJ, et al. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J. 2015;46(5):1308–1321.
  • Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy. 2019;74(12):2312–2319.
  • Stevenson DD, White AA. Clinical characteristics of aspirin-exacerbated respiratory disease. Immunol Allergy Clin North Am. 2016;36(4):643–655.
  • Scott WC, Cahill KN, Milne GL, et al. Inflammatory heterogeneity in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2020;S0091-6749(20):31584.
  • Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2019;7(8):2812–2820.e3.
  • Bachert C, Gevaert P, Hellings P. Biotherapeutics in chronic rhinosinusitis with and without nasal polyps. J Allergy Clin Immunol Pract. 2017;5(6):1512–1516.
  • Turner JH, Chandra RK, Li P, et al. Identification of clinically relevant chronic rhinosinusitis endotypes using cluster analysis of mucus cytokines. J Allergy Clin Immunol. 2018;141(5):1895–1897.e7.
  • Tan BK, Klingler AI, Poposki JA, et al. Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. J Allergy Clin Immunol. 2017;139(2):699–703.e7.
  • Li X, Meng J, Qiao X, et al. Expression of TGF, matrix metallopro‐ teinases, and tissue inhibitors in Chinese chronic rhinosinusitis. J Allergy Clin Immunol. 2010;125(5):1061–1068.
  • Cao P‐P, Li H‐B, Wang B‐F, et al. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese. J Allergy Clin Immunol. 2009;124(3):478–84, 484.e1-2.
  • Wang X, Zhang N, Bo M, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344–1353.
  • Lou H, Zhang N, Bachert C, et al. Highlights of eosinophilic chronic rhinosinusitis with nasal polyps in definition, prognosis, and advancement. Int Forum Allergy Rhinol. 2018;8(11):1218‐1225.
  • Szefler SJ, Wenzel S, Brown R, et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol. 2012;129(3 Suppl):S9–23.
  • Borrebaeck CA. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer. 2017;17(3):199–204.
  • Carr TF, Kraft M. Use of biomarkers to identify phenotypes and endotypes of severeasthma. Ann Allergy Asthma Immunol. 2018;121(4):414–420.
  • Manka LA, Wechsler ME. Selecting the right biologic for your patients with severe asthma. Ann Allergy Asthma Immunol. 2018;121(4):406–413.
  • Uwaezuoke SN, Ayuk AC, Eze JN. Severe bronchial asthma in children: a review of novel biomarkers used as predictors of the disease. J Asthma Allergy. 2018 15;11:11–18.
  • Zedan MM, Osman AM, Laimon WN, et al. Airway InflammatoryBiomarker: could it tailor the right medications for the right asthmatic patient? Iran J Immunol. 2016;13(2):70–88.
  • Silkoff PE, Laviolette M, Singh D, et al. Longitudinal stability of asthma characteristics and biomarkers from the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study. Respir Res. 2016 23; 17: 43.
  • Hanania NA, Wenzel S, Rosén K, et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med. 2013;187(8):804.
  • Loza MJ, Adcock I, Auffray C, et al. ADEPT and U-BIOPRED investigators.longitudinally stable, clinically defined clusters of patients with asthma independently identified in the ADEPT and U-BIOPRED asthma studies. Ann Am Thorac Soc. 2016;13 (Suppl 1):S102–3.
  • Pavord ID, Siddiqui S, Papi A, et al. Dupilumab efficacy in patients stratified by baseline treatment intensity andlung function. J Asthma Allergy. 2020 Dec;16(13):701–711.
  • Licari A, Brambilla I, Sacchi L, et al. Periostin, type 2 biomarker, is not associated with asthma control grade in asthmatic allergic children. Respir Med. 2019 May;151:118–120.
  • Carpagnano GE, Scioscia G, Lacedonia D, et al. Looking for airways periostin in severe asthma: couldit be useful for clustering type 2 endotype? Chest. 2018;154(5):1083–1090.
  • McKinley L, Alcorn JF, Peterson A, et al. Th17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol. 2008;181(6):4089–4097.
  • Godar M, Blanchetot C, de Haard H, et al. Personalized medicine with biologics for severe type 2 asthma: current status and future prospects. mAbs. 2018;10(1):34–45.
  • Petsky HL, Cates CJ, Kew KM, et al. Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a systematic review and meta-analysis. Thorax. 2018;73(12):1110–1119.
  • Froidure A, Mouthuy J, Durham SR. DurhamSR et.al Asthma phenotypes and IgE responses. Eur Respir J. 2016;47(1):304–319.
  • Tiotiu A. Biomarkers in asthma: state of the art. Asthma Res Pract. 2018 21;4:10. .
  • Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360(10):973–984.
  • Katz LE, Gleich GJ, Hartley B, et al. eosinophil count is a useful biomarker to identify patients with severe eosinophilic asthma. Ann Am Thorac Soc. 2014;11(4):531–536.
  • Bartoli ML, Bacci E, Carnevali S, et al. Quality evaluation of samples obtained by spontaneous or induced sputum: comparison between two methods of processing and relationship with clinical and functional findings. J Asthma. 2002;39(6):479–486.
  • Castro M, Mathur S, Hargreave F, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–1132.
  • Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368(26):2455–2466.
  • Bernstein JA, Jr PR. Treatment of severe, uncontrolled eosinophilic asthma: where we are heading. J Asthma. 2019;56(5):459–472.
  • Kountakis SE, Arango P, Bradley D, et al. Molecular and cellular staging for the severity of chronic rhinosinusitis. Laryngoscope. 2004;114(11):1895–1905.
  • Nakayama T, Yoshikawa M, Asaka D, et al. Mucosal eosinophilia and recurrence of nasal polyps: new classification of chronic rhinosinusitis. Rhinology. 2011;49(4):392–396.
  • Staudacher AG, Peters AT, Kato A, et al. Use of endotypes, phenotypes,and inflammatory markers to guide treatment decisions in chronic rhinosinusitis. Ann Allergy Asthma Immunol. 2020;124(4):318–325.
  • Laidlaw TM, Buchheit KM. Biologics in chronic rhinosinusitis with nasal polyposis. Ann Allergy Asthma Immunol. 2020;124(4):326–332.
  • Liu T, Kanaoka Y, Barrett NA, et al. Aspirin-exacerbated respiratory disease involves a cysteinyl leukotriene-driven IL-33-mediated mast cell activation pathway. J Immunol. 2015;195(8):3537e3545.
  • Maxfield AZ, Landegger LD, Brook CD, et al. Periostin as a biomarker for nasal polyps in chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2018;158(1):181–186.
  • Kim DK, Jin HR, Eun KM, et al. The role of interleukin-33 in chronic rhinosinusitis. Thorax. 2017;72(7):635e645.
  • Buchheit KM, Cahill KN, Katz HR, et al. Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137(5):1566e1576.
  • Licari A, Manti S, Marseglia A, et al. Biologics in children with allergic diseases. Curr Pediatr Rev. 2020;16(2):140–147.
  • Nagarkar DR, Poposki JA, Tan BK, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2013;132(3):593e600.
  • Barakat L, Torres MJ, Phillips EJ. Biological treatments in allergy: prescribing patterns and management of hypersensitivity reactions. J Allergy Clin Immunol Pract. 2021 Mar 9(3):1396–1399.e2.
  • Giovannini M, Mori F, Barni S, et al. and mepolizumab in the landscape of biological therapy for severe asthma in children: how to choose? Ital J Pediatr. 2019;45(1):151.
  • Brodlie M, McKean MC, Moss S. The oral corticosteroid-sparing effect of omalizumab in children with severe asthma. Arch Dis Child. 2012;97(7):604–609.
  • Busse WW, Morgan WJ, Gergen PJ, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364(11):1005–1015.
  • Teach SJ, Gill MA, Togias A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015;136(6):1476–1485.
  • Chipps BE, Lanier B, Milgrom H, et al. Omalizumab in children with uncontrolled allergic asthma: review of clinical trial and real-world experience. J Allergy Clin Immunol. 2017;139(5):1431–1444.
  • Deschildre A, Marguet C, Salleron J, et al. Add-on omalizumab in children with severe allergic asthma: a 1-year real life survey. Eur Respir J. 2013;42(5):1224–1233.
  • Deschildre A, Marguet C, Langlois C, et al. Real-life long-term omalizumab therapy in children with severe allergic asthma. Eur Respir J. 2015;46(3):856–859.
  • Licari A, Castagnoli R, Denicolò C, et al. Omalizumab in childhood asthma Italian study group. Omalizumab in children with severe allergic asthma: the Italian real-life experience. Curr Respir Med Rev. 2017;13(1):36–42.
  • MacDonald KM, Kavati A, Ortiz B, et al. Short- and long-term real-world effectiveness of omalizumab in severe allergic asthma: systematic review of 42 studies published 2008-2018. Expert Rev Clin Immunol. 2019;15(5):553–569.
  • Heffler E, Paoletti G, Giorgis V, et al. Real-life studies of biologics used in asthma patients: key differences and similarities to trials. Expert Rev Clin Immunol. 2019 Sep;15(9):951–958.
  • Casale TB, Luskin AT, Busse W, et al. Effectiveness by biomarker status in patients with asthma: evidence from PROSPERO, A Prospective Real-World Study. J Allergy Clin Immunol Pract. 2019 Jan 7(1):156–164.e1.
  • Agache I, Song Y, Alonso-Coello P, et al. Efficacy and safety of treatment with biologicals for severe chronic rhinosinusitis with nasal polyps: A systematic review for the EAACI guidelines. Allergy. 2021 Mar 8. doi:https://doi.org/10.1111/all.14809
  • https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761055s014lbl.pdf 28 Jan 2021
  • [cited 2021 Jan 28].https://www.ema.europa.eu/en/documents/smop/chmp-post-authorisation-summary-positive-opinion-dupixent-ii-17
  • Gevaert P, Omachi TA, Corren J, et al. and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol. 2020 Sep;146(3):595.
  • Hearn AP, Kent BD, Jackson DJ. Biologic treatment options for severe asthma. Curr Opin Immunol. 2020 Nov;16(66):151–160.
  • Castagnoli R, De Filippo M, Votto M, et al. An update on biological therapies for pediatric allergic diseases. Minerva Pediatr. 2020;72(5):364–371.
  • NUCALA (mepolizumab) EMA approval 2014. [cited 2021 Jan 28] Available from: https://gskprocom/content/
  • Nucala (mepolizumab) for injection [prescribing information] Research Triangle Park, NC: GlaxoSmithKline. 2015.
  • Gupta A, Pouliquen I, Austin D, et al., Subcutaneous mepolizumab in children aged 6 to 11 years with severe eosinophilic asthma. Pediatr Pulmonol. 54(12): 1957–1967. 2019.
  • Basu A, Dalal A, Canonica GW, et al. Economic analysis of the phase III MENSA study evaluating mepolizumab for severe asthma with eosinophilic phenotype. Expert Rev Pharmacoecon Outcomes Res. 2017;17(2):121–131.
  • Ortega HG, Yancey SW, Mayer B, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med. 2016;4(7):549–556.
  • Pavord ID, Korn S, Howarth P, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double- blind, placebo-controlled trial. Lancet. 2012;380(9842):651–659.
  • Khurana S, Brusselle GG, Bel EH, et al. Long-term safety and clinical benefit of mepolizumab in patients with the most severe eosinophilic asthma: the COSMEX study. Clin Ther. 2019;41(10):2041–2056.e5.
  • Gupta A, Ikeda M, Geng B, et al. Long-term safety and pharmacodynamics of mepolizumab in children with severe asthma with an eosinophilic phenotype. J Allergy Clin Immunol. 2019;144(5):1336–1342.e7.
  • Chapman KR, Albers FC, Chipps B, et al. The clinical benefit of mepolizumab replacing omalizumab in uncontrolled severe eosinophilic asthma. Allergy. 2019;74(9):1716–1726.
  • Wang FP, Liu T, Lan Z, et al. Efficacy and safety of anti-interleukin-5 therapy in patients with asthma: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0166833.
  • Busse W, Chupp G, Nagase H, et al. Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: indirect treatment comparison. J Allergy Clin Immunol. 2019;143(1):190–200.e20.
  • Papaioannou AI, Fouka E, Papakosta D, et al. between biologics in severe asthma patients. When the first choice is not proven to be the best. Clin Exp Allergy. 2021;51(2):221–227.
  • Gevaert P, Hellman C, Lundblad L, et al. Differential expression of the interleukin 5 receptor alpha isoforms in blood and tissue eosinophils of nasal polyp patients. Allergy. 2009;64(5):725–732.
  • Han JK, Bachert C, Fokkens W, et al. SYNAPSE study investigators. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2021;S2213-2600(21):00097.
  • Votto M, De Filippo M, Licari A, et al. Biological Therapies in Children and Adolescents with Severe Uncontrolled Asthma: a Practical Review. Biologics. 2021;15:133–142.
  • Busse WW, Bleecker ER, FitzGerald JM, et al. BORA study investigators. Benralizumab for adolescent patients with severe, eosinophilic asthma: safety and efficacy after 3 years oftreatment. J Allergy Clin Immunol. 2021 17;S0091-6749(21):00226.
  • Tversky J, Lane AP, Azar A. Benralizumab effect on severe chronic rhinosinusitis with nasal polyps (CRSwNP): a randomized double-blind placebo- controlled trial. Clin Exp Allergy. 2021 5836844.
  • Canonica GW, Harrison TW, Chanez P. Benralizumab improves symptoms of patients withsevere, eosinophilic asthma with a diagnosis of nasal polyposis. Allergy. 2021. https://doi.org/10.1111/all.14902.
  • Tsurumaki H, Matsuyama T, Ezawa K, et al. Rapid effect of benralizumab for hypereosinophilia in a case of severe asthma with eosinophilic chronic rhinosinusitis. Medicina (Kaunas). 2019;55(7):336.
  • Agache I, Akdis CA, Akdis M, et al. EAACI biologicals guidelines-recommendations for severe asthma. Allergy. 2021;76(1):14–44.
  • Principe S, Porsbjerg C, Bolm Ditlev S. Treating severe asthma: targeting the IL-5 pathway. Clin Exp Allergy. 2021. https://doi.org/10.1111/cea.13885.
  • Gevaert P, Lang-Loidolt D, Lackner A, et al. Nasal IL5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J Allergy Clin Immunol. 2006;118:1133–1141.
  • Boiko NV, Lodochkina OE, Kit MM, et al. Impact of reslizumab on the course of chronic rhinosinusitis in patientswith eosinophilic asthma. Vestn Otorinolaringol. 2021;86(2):43–48. .
  • Dupilumab FDA Prescribing Information. https://www.acces.sdata.fda.gov/drugsatfda_docs/label/2019/761055s014lbl.pdf. 2020 Jan 19.
  • Maspero J, Fitzgerald M, Pavord I, et al. Dupilumab reduces severe exacerbation rate and improves lung function in adolescent patients with uncontrolled, moderate-to-severe asthma: from the Liberty asthma quest study. Chest. 2018;154(4Suppl):25A–7A.
  • Sicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014;133(2):291–307.
  • Licari A, Castagnoli R, Marseglia A, et al., Dupilumab to treat type 2 inflammatory diseases in children and adolescents. Paediatr Drugs. 22(3): 295–310. 2020.
  • Corren J, Castro M, Chanez P, et al. Dupilumab improves symptoms, quality of life, and productivity in uncontrolled persistent asthma. Ann Allergy Asthma Immunol. 2019;122(1):41–49.e2.
  • Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394(10209):1638–1650.
  • Pelaia C, Pelaia G, Crimi C, et al. Tezepelumab: a potential new biological therapy for severe refractory asthma.Int. J Mol Sci. 2021;22(9):4369.
  • Menzies-Gow A, Corren J, Bourdin A. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–1809.
  • Menzies-Gow A, Wechsler ME, Brightling CE. Unmet need in severe, uncontrolledasthma: can anti-TSLP therapy with tezepelumab provide a valuable new treatment option? Respir Res. 2020;21(1):268.
  • Klimek L, Jutel M, Bousquet J, et al. Management of patients with chronic rhinosinusitis during the COVID-19 pandemic-An EAACI position paper. Allergy. 2021;76(3):677–688
  • Cardinale F, Ciprandi G, Barberi S, et al., and the SIAIP Task Force. Consensus statement of the Italian society of pediatric allergy and immunology for the pragmatic management of children and adolescents with allergic or immunological diseases during the COVID-19 pandemic. Ital J Pediatr. 46(1): 84. 2020.
  • Vultaggio A, Agache I, Akdis CA, et al. Considerations on biologicals for patients with allergic disease in times of the COVID-19 pandemic: an EAACI statement. Allergy. 2020;75(11):2764–2774.
  • Chan S, Chatzipetrou A, Vogelberg C, et al. Use of biologicals in allergic and type-2 inflammatory diseases during the current COVID-19 pandemic: position paper of Ärzteverband Deutscher Allergologen (AeDA) A, Deutsche Gesellschaft für Allergologie und Klinische Immunologie (DGAKI) B, Gesellschaft für Pädiatrische Allergologie und Umweltmedizin (GPA) C, Österreichische Gesellschaft für Allergologie und Immunologie (ÖGAI) D, Luxemburgische Gesellschaft für Allergologie und Immunologie (LGAI) E, Österreichische Gesellschaft für Pneumologie (ÖGP) F in co-operation with the German, Austrian, and Swiss ARIA groups G, and the European Academy of Allergy and Clinical Immunology (EAACI) H. Allergol Select. 2020 Sep;7(4):53–68.
  • Morais-Almeida M, Aguiar R, Martin B, et al. COVID-19, asthma, and biological therapies: what we need to know. World Allergy Organ J. 2020;13(5):100126.
  • Caminati M, Vultaggio A, Matucci A. Asthma in a large COVID-19 cohort: prevalence, features, and determinants of COVID-19 disease severity. Respir Med. 2020;176:106261.
  • Moeller A, Thanikkel L, Duijts L, et al. COVID-19 in children with underlying chronic respiratory diseases: survey results from 174 centres. ERJ Open Res. 2020;6(4):00409–2020.
  • Jian L, Yi W, Zhang N, et al. Perspective:COVID-19, implications of nasal diseases and consequences for their management. J Allergy Clin Immunol. 2020;146(1):67–69.
  • Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251–2261.
  • Wang H, Song J, Pan L, et al. The characterization of chronic rhinosinusitis in hospitalized patients with COVID-19. J Allergy Clin Immunol Pract. 2020;8(10):3597–3599.e2.
  • Choi YJ, Park JY, Lee HS. Effect of asthma and asthma medication on the prognosis ofpatients with COVID-19. Eur Respir J. 2021;57(3):2002226.
  • Izquierdo JL, Almonacid C, González Y, et al. The impact of COVID-19 on patients with asthma. Eur Respir J. 2021;57(3):2003142.
  • Ramakrishnan RK, Al Heialy S, Hamid Q. Implications of preexisting asthma on COVID-19 pathogenesis. Am J Physiol Lung Cell Mol Physiol. 2021;320(5):L880–L891.
  • Naziroğlu T, Aksu K. Rare atopy in COVID-19 patients or COVID-19 famine in atopic patients? Dermatol Ther. 2021;34:e14581
  • Perlini S, Ciprandi G, Castagnoli R, et al. Eosinopenia could be a relevant prognostic biomarker in patients with coronavirus disease 2019. Allergy Asthma Proc. 2020;41(6):e80–e82.
  • Maes T, Bracke K, Brusselle GG. Reply to Lipworth: inhaledCorticosteroids and COVID-19. Am J Respir Crit Care Med. 2020;202(6):900–902.
  • Hanon S, Brusselle G, Deschampheleire M, et al. COVID-19 and biologics in severe asthma: data from the Belgian Severe Asthma Registry. Eurn Respir J. 2020;56(6):2002857.
  • Bousquet J, Jutel M, Akdis CA, et al. ARIA-EAACI statement on asthma and COVID-19 (June 2, 2020). Allergy. 2021;76(3):689–697
  • Pfaar O, Klimek L, Jutel M, et al. COVID-19 pandemic: practical considerations on the organization of an allergy clinic - an EAACI/ARIA position paper. Allergy. 2020 Jun 12: 10.1111/all.14453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.