271
Views
0
CrossRef citations to date
0
Altmetric
Review

Should we be screening for COPD? – looking through the lens of lung cancer screening

ORCID Icon & ORCID Icon
Pages 753-771 | Received 30 Apr 2023, Accepted 13 Sep 2023, Published online: 03 Oct 2023

References

  • Mangione CM, Barry MJ, Nicholson WK, et al. Screening for chronic obstructive pulmonary disease US Preventive Services Task Force reaffirmation recommendation statement. JAMA. 2022;327(18):1806–1811. doi: 10.1001/jama.2022.5692
  • Martinez DJ, Agusti A, Celli BR, et al. Treatment trials in Young patients with chronic obstructive pulmonary disease and Pre-chronic obstructive pulmonary disease patients: time to move forward. Am J Respir Crit Care Med. 2022;205(3):275–287. doi: 10.1164/rccm.202107-1663SO
  • Bartolome C, Fabbri L, Criner G, et al. Definition and nomenclature of chronic obstructive pulmonary disease: time for its revision. Am J Respir Crit Care Med. 2022;206(11):1317–1325. doi: 10.1164/rccm.202204-0671PP
  • Han MK, Augusti A, Celli BR, et al. From GOLD 0 to Pre-COPD. Am J Respir Crit Care Med. 2021;203(4):414–423. doi: 10.1164/rccm.202008-3328PP
  • Wan ES, Fortis S, Regan EA, et al. Longitudinal phenotypes and mortality in preserved ratio impaired spirometry in the COPDGene study. Am J Respir Crit Care Med. 2018;198(11):1397–1405. doi: 10.1164/rccm.201804-0663OC
  • Bhatt SP, O’Connor GT. Screening for chronic obstructive pulmonary disease challenges and opportunities. JAMA. 2022; 327(18):1768–1770. doi: 10.1001/jama.2022.3823
  • Fortis S. Should we consider screening spirometry in individuals who are asymptomatic. Ann Am Thorac Soc. 2022;19(8):1268–1274. doi: 10.1513/AnnalsATS.202205-374ED
  • A National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose Computed tomographic screening. N Engl J Med 2011;365(5):395–409.
  • de Konning HJ, van der Aalst CM, Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomised trial. N Engl J Med. 2020;382(6):503–513. doi: 10.1056/NEJMoa1911793
  • Becker N, Motsch E, Trotter A, et al. Lung cancer mortality reduction by LDCT screening—results from the randomized German LUSI trial. Int J Cancer Res. 2020;146(6):1503–1513. doi: 10.1002/ijc.32486
  • Young RP, Hopkins RJ, Gamble GD, et al. Incorporating baseline lung function in lung cancer screening: does a “lung health Check: help predict outcomes”? Chest. 2021;159(4):1664–1669. doi:10.1016/j.chest.2020.10.070
  • Tanner NT, Dai L, Bade BC, et al. Assessing the generalizability of the national lung screening trial: comparison of patients with stage 1 disease. Am J Respir Crit Care Med. 2017;196:602–608. doi: 10.1164/rccm.201705-0914OC
  • Rivera MP, Tanner NI, Silvestri GA, et al. Incorporating coexisting chronic illness into decisions about Patient selection for lung cancer screening: an official American thoracic society research statement. Am J Respir Crit Care Med. 2018;198(2):e3–e13. doi: 10.1164/rccm.201805-0986ST
  • Young RP, Hopkins RJ. Chronic obstructive pulmonary disease (COPD) and lung cancer screening. Transl Lung Cancer Res. 2018;7(3):347–360. doi: 10.21037/tlcr.2018.05.04
  • Berry CE, Wise RA. Mortality in COPD: cause, risk factors, and prevention. COPD. 2010;7(5):375–382. doi: 10.3109/15412555.2010.510160
  • Ching S-M, Chia Y-C, Lentjes MAH, et al. FEV1 and total cardiovascular mortality and morbidity over an 18 years follow-up population-based prospective EPIC-NORFOLK study. BMC Public Health. 2019;19(1):501. doi: 10.1186/s12889-019-6818-x
  • Young RP, Ward RC, Scott RJ, et al. Airflow limitation and mortality during cancer screening in the National lung screening trial: why quantifying airflow limitation matters. Thorax. 2023;78:690–697.
  • Young RP, Hopkins RJ. The potential impact of chronic obstructive pulmonary disease in lung cancer screening: implications for the screening clinic. Expert Review Resp Med. 2019;13(8):699–707. doi: 10.1080/17476348.2019.1638766
  • Young RP, Duan F, Chiles C, et al. Airflow limitation and histology shift in the National lung screening trial: the NLST_ACRIN cohort substudy. Am J Respir Crit Care Med. 2015;192(9):1060–1067. doi: 10.1164/rccm.201505-0894OC
  • Tammemagi MC, Church TR, Hocking WG, et al. Evaluation of the lung cancer risks at which to Screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts. PLOS Med. 2014;11(12):e1001764. doi: 10.1371/journal.pmed.1001764
  • Lebrett MB, Balaya H, Evison M, et al. Analysis of lung cancer risk model (PLCOM2012 and LLPV2) performance in a community-based lung cancer screening programme. Thorax. 2020;75(8):661–668. doi: 10.1136/thoraxjnl-2020-214626
  • Advani S, Braithwaite D. Optimizing selection of candidates for lung cancer screening: role of comorbidity, frailty, and life expectancy. Transl Lung Cancer Res. 2019; 8(Suppl 4):S454–S459. doi: 10.21037/tlcr.2019.10.03
  • Krist AH, Davidson KW, Mangione CM, et al. Screening for lung cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(10):962–970. doi: 10.1001/jama.2021.1117
  • Jonas DE, Reuland DS, Reddy SM, et al. Screening for lung cancer with low-dose Computed Tomography: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2021;325(10):971–987. doi: 10.1001/jama.2021.0377
  • Jones GS, Baldwin DR. Recent advances in the management of lung cancer. Clin Med. 2018;18(2):s41–s6. doi: 10.7861/clinmedicine.18-2-s41
  • Chirieac LR, Flieder D. High-resolution computed tomography screening for lung cancer: unexpected findings and new controversies regarding adenocarcinogenesis. Arch Pathol Lab Med. 2010;134(1):41–48. doi: 10.5858/134.1.41
  • ten Haaf K, van der Aalst CM, de Koning HJ. Clinically detected non-aggressive lung cancers: implications for overdiagnosis and overtreatment in lung cancer screening. Thorax. 2018;73(5):407–408. doi: 10.1136/thoraxjnl-2017-211149
  • Cheung LC, Berg CD, Castle PE, et al. Life-gained-based versus risk-based selection of smokers for lung cancer screening. Ann Intern Med. 2019;171(9):623–632. doi: 10.7326/M19-1263
  • Shavelle RM, Paculdo DR, Kush SJ, et al. Life expectancy and years of life lost in chronic obstructive pulmonary disease: findings from the NHANES III follow-up study. International J COPD. 2009;4:137–148. doi: 10.2147/COPD.S5237
  • Young RP, Hopkins R, Eaton TE. Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes. Eur Respir J. 2007;30(4):616–622. doi: 10.1183/09031936.00021707
  • Burrows B, Knudson RJ, Cline MG, et al. Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis. 1977;115(2):195–205. doi: 10.1164/arrd.1977.115.2.195
  • Hopkins RJ, Duan F, Chiles C, et al. Reduced expiratory flow rate among heavy smokers increases lung cancer risk. Results from the National lung screening trial-American College of Radiology Imaging Network cohort. Ann ATS. 2017;14(3):392–402. doi: 10.1513/AnnalsATS.201609-741OC
  • Howard DH, Richards TB, Bach PB, et al. Comorbidities, smoking status, and life expectancy among individuals eligible for lung cancer screening. Cancer. 2015;121(24):4341–4347. doi: 10.1002/cncr.29677
  • Luo J, Hendryx M, Qi L, et al. Pre-existing diabetes and lung cancer prognosis. B J Cancer. 2016;216; 115(1):76–79. doi: 10.1038/bjc.2016.141
  • Kurishima K, Watanabe H, Ishikawa H, et al. Survival of patients with lung cancer and diabetes mellitus. Mol Clin Oncol. 2017;6(6):907–910. doi: 10.3892/mco.2017.1224
  • Deng H-Y, Zheng X, Zha P, et al. Diabetes mellitus and survival on non-small cell lung cancer patients after surgery: a comprehensive systematic review and meta-analysis. Thorac Cancer. 2019;10(3):571–578. doi: 10.1111/1759-7714.12985
  • Tammemagi MC. Selecting lung cancer screenees using risk prediction models-where do we go from here. Transl Lung Cancer Res. 2018;7(3):243–253. doi: 10.21037/tlcr.2018.06.03
  • Majeed H, Zhu H, Williams SA, et al. Prevalence and impact of medical comorbidities in a real-world lung cancer screening population. Clin Lung Cancer. 2022;23(5):419–427. doi: 10.1016/j.cllc.2022.03.009
  • Young RP, Hopkins RJ. How the genetics of lung cancer may overlap with COPD. Respirology. 2011;16(7):1047–1055. doi: 10.1111/j.1440-1843.2011.02019.x
  • Ulinski R, Kwiecien I, Domagala-Kulawik J, et al. Lung cancer in the course of COPD-Emerging problems Today. Cancers. 2022;14(15):3819. doi: 10.3390/cancers14153819
  • Ziolkowska-Suchanek I, Mosor M, Gabryel P, et al. Susceptibility loci in lung cancer and COPD: association of IREB2 and FAM13A with pulmonary diseases. Sci Rep. 2015;5(1):13502. doi: 10.1038/srep13502
  • Watza D, Lusk CM, Dyson G, et al. COPD-dependent effects of genetic variation in key inflammation pathway genes on lung cancer risk. Int J Cancer. 2019;147(3):747–756. doi: 10.1002/ijc.32780
  • Young RP, Hopkins RJ, Etzel C, et al. Genetics of lung cancer susceptibility and COPD. Lancet Oncol. 2011;12(7):622–623. doi: 10.1016/S1470-2045(11)70169-3
  • Kachuri L, Johansson M, Rashkin SR, et al. Immune-mediated genetic pathways resulting in pulmonary function impairment increase lung cancer susceptibility. Nat Commun. 2020;11(27):1–14. doi: 10.1038/s41467-019-13855-2
  • Sekine Y, Suzuki H, Yamada Y, et al. Severity of chronic obstructive pulmonary disease and its relationship to lung cancer prognosis after surgical resection. Thorac Cardiovasc Surg. 2013;61(2):124–130. doi: 10.1055/s-0032-1304543
  • Kesimer M, Ford AA, Ceppe A, et al. Airway mucin concentration as a Marker of chronic bronchitis. N Engl J Med. 2017;377(10):911–922. doi: 10.1056/NEJMoa1701632
  • Li J, Ye Z. The potential role and regulatory mechanisms of MUC5AC in chronic obstructive pulmonary disease. Molecules. 2020;25(4437):1–16. doi: 10.3390/molecules25194437
  • Radicioni G, Ceppe A, Ford AA, et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2021;9(11):1241–1254. doi: 10.1016/S2213-2600(21)00079-5
  • Lakshmanan I, Rachagani S, Hauke R, et al. MUC5AC interactions with integrin β4 enhances the migration of lung cancer cells through FAK signalling. Oncogene. 2016;35(31):4112–4121. doi: 10.1038/onc.2015.478
  • Bauer AK, Umer M, Richardson VL, et al. Requirement for MUC5AC in KRAS-dependent lung carcinogenesis. JCI Insight 2018; 3(15): p. e120941:1–14.
  • Krishn SR, Ganguly K, Kaur S, et al. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis. 2018;39(5):633–651. doi: 10.1093/carcin/bgy019
  • Webber EM, Lin JS, Thomas RG. Screening for chronic obstructive pulmonary disease: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2022;327(18):1812–1816. doi: 10.1001/jama.2022.4708
  • Goffin JR, Pond GR, Puksa S, et al. Chronic obstructive pulmonary disease prevalence and prediction in a high-risk lung cancer screening population. BMC Pulm Med. 2020;20(300):1–10. doi: 10.1186/s12890-020-01344-y
  • De Oca MM, Halbert RJ, Lopez MV, et al. The chronic bronchitis phenotype in subjects with and without COPD: the PLATINO study. Eur Respir J. 2012;40(1):28–36. doi: 10.1183/09031936.00141611
  • Balte PP, Chaves PHM, Couper DJ, et al. Association of Nonobstructive chronic bronchitis with respiratory health outcomes in adults. JAMA Intern Med. 2020;180(5):676–686. doi: 10.1001/jamainternmed.2020.0104
  • Wu F, Fan H, Liu J, et al. Association between non-obstructive chronic bronchitis and incident chronic obstructive pulmonary disease and all-cause mortality: a systematic review and meta-analysis. Front Med (Lausanne). 2022;8:805192. doi: 10.3389/fmed.2021.805192
  • Han MK, Ye W, Wang D, et al. Bronchodilators in Tobacco-Exposed Persons with symptoms and preserved lung function. N Engl J Med. 2022;387(13):1173–1184. doi: 10.1056/NEJMoa2204752
  • Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(3):228–237. doi: 10.1164/rccm.201210-1843CI
  • Dotan Y, So JY, Kim V. Chronic bronchitis: where are we Now? J COPD Foun. 2019;6(2):178–192. doi: 10.15326/jcopdf.6.2.2018.0151
  • Pinksy PF, Church TR, Izmirlian G, et al. The National lung screening trial: results stratified by demographics, smoking history and lung cancer histology. Cancer. 2013;119(22):3976–3983. doi: 10.1002/cncr.28326
  • Koshiol J, Rotunno M, Consonni D, et al. Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study. PLoS ONE 2009; 4(10): p. e7380:1–7.
  • Mizgerd JP. Inflammation and pneumonia: why are some more susceptible than others? Clin Chest Med. 2018;39(4):669–676. doi: 10.1016/j.ccm.2018.07.002
  • Hotchkiss RS, Moldawer LL, Opal SM, et al. Sepsis and septic shock. Nat Rev Dis Primers. 2016;2(1):16045. doi: 10.1038/nrdp.2016.45
  • Yao H, Rahman I. Current concepts on the role of inflammation in COPD and lung cancer. Curr Opin Pharmacol. 2009;9(4):375–383. doi: 10.1016/j.coph.2009.06.009
  • Lakshmanan I, Chaudhary S, Vengoji R, et al. ST6GaINAcI promotes lung cancer metastasis by altering MUC5AC sialylation. Mol Oncol. 2021;15(7):1866–1881. doi: 10.1002/1878-0261.12956
  • Wijnant SRA, De Roos E, Kavousi M, et al. Trajectory and mortality of preserved ratio impaired spirometry: the Rotterdam study. Eur Respir J. 2020;55(191217):1–12. doi: 10.1183/13993003.01217-2019
  • Adibi A, Sadatsafavi M. Looking at the COPD spectrum through “PRISm”. Eur Pespir J. 2020;55(1):1902217. doi: 10.1183/13993003.02217-2019
  • Wan ES, Balte P, Schwartz JE, et al. Association between preserved ratio impaired spirometry and clinical outcomes in US adults. JAMA. 2021;326(22):2287–2298. doi: 10.1001/jama.2021.20939
  • Fortis S, Comellas A, Kim V, et al. Low FVC/TLC in preserved ratio impaired spirometry (PRISm) is associated with features of and progression to obstructive lung disease. Sci Rep. 2020;10(1):5169. doi: 10.1038/s41598-020-61932-0
  • Kaise T, Sakihara E, Tamaki K, et al. Prevalence and characteristics of individuals with preserved ratio impaired spirometry (PRISm) and/or impaired lung function in Japan: the OCEAN study. Int J COPD. 2021;16:2665–2675. doi: 10.2147/COPD.S322041
  • Kim J, L C-H, Lee HY, et al. Association between comorbidities and preserved ratio impaired spirometry: using the Korean National health and nutrition examination survey IV–VI. Respiration. 2022;101(1):25–33. doi: 10.1159/000517599
  • Re Heo I, Kim HC, Lee SJ, et al. Impact of coexistent preserved ratio impaired spirometry on the survival of patients with lung cancer: analysis of data from the Korean Association for lung cancer registry. Thorac Cancer. 2021;12(18):2478–2486. doi: 10.1111/1759-7714.14095
  • Knox-Brown B, Amaral AFS, Burney P. Concerns about PRISm. Lancet Respir Med. 2022;10(6):e51–e52. doi: 10.1016/S2213-2600(22)00134-5
  • Kaaks R, Christodoulou E, Motsch E, et al. Lung function impairment I the German lung cancer intervention study (LUSI): prevalence, symptoms, and associations with lung cancer risk, tumor histology and all-cause mortality. Transl Lung Cancer Res. 2022;11(9):1896–1911. doi: 10.21037/tlcr-22-63
  • Young RP, Scott RJ, Gamble GD. Lung function impairment in lung cancer screening: discordance between risk and screening outcomes when looking through a PRISm. Transl lung cancer Res. 2022;11(10):1988–1994. doi: 10.21037/tlcr-22-634
  • Motoishi M, Sawai S, Hori T, et al. The pre-operative HbA1c level is an independent prognostic factor for the post-operative survival after resection of non-small lung cancer in elderly patients. Surg Today. 2018;48(5):517–524. doi: 10.1007/s00595-017-1612-9
  • Kong M, Lim YJ. Hemoglobin A1c level is a prognostic factor for locoregional recurrence in stage III non-small cell lung cancer patients treated with radiotherapy. Thoracic Cancer. 2021;12(22):3032–3038. doi: 10.1111/1759-7714.14174
  • Yoo TK, Lee MY, Lee SA, et al. Association of glycosylated haemoglobin level and cancer-related mortality in patients without diabetes. J Clin Med. 2022;11(19):5933. doi: 10.3390/jcm11195933
  • Iaccarino JM, Silvestri GS, Wiener RS. Patient-level trajectories and outcomes after low-dose CT screening in the National lung screening trial. Chest. 2019;156(5):965–971. doi: 10.1016/j.chest.2019.06.016
  • Sekine Y, Behnia M, Fujisawa T. Impact of COPD on pulmonary complications and on long-term survival of patients undergoing surgery for NSCLC. Lung Cancer. 2002;37(1):95–101. doi: 10.1016/S0169-5002(02)00014-4
  • Rustagi AS, Byers AL, Keyhani S. Likelihood of lung cancer screening by poor health status and race and ethnicity in US adults, 2017 to 2020. JAMA Netw Open. 2022;5(3):e225318. doi: 10.1001/jamanetworkopen.2022.5318

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.