567
Views
0
CrossRef citations to date
0
Altmetric
Review

Epithelial alarmins: a new target to treat chronic respiratory diseases

, , ORCID Icon, , , & show all
Pages 773-786 | Received 25 Jun 2023, Accepted 21 Sep 2023, Published online: 03 Oct 2023

References

  • Carlier FM, de Fays C, Pilette C. Epithelial barrier dysfunction in chronic respiratory diseases. Front Physiol. 2021;12:691227. doi: 10.3389/fphys.2021.691227
  • Planté-Bordeneuve T, Pilette C, Froidure A. The epithelial-immune crosstalk in pulmonary fibrosis. Front Immunol. 2021;12:631235. doi: 10.3389/fimmu.2021.631235
  • Burgoyne RA, Fisher AJ, Borthwick LA. The role of epithelial damage in the pulmonary immune response. Cells. 2021;10(10):2763. doi: 10.3390/cells10102763
  • Moermans C, Damas K, Guiot J, et al. Sputum IL-25, IL-33 and TSLP, IL-23 and IL-36 in airway obstructive diseases. Reduced levels of IL-36 in eosinophilic phenotype. Cytokine. 2021;140:155421. doi: 10.1016/j.cyto.2021.155421
  • Calderon AA, Dimond C, Choy DF, et al. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Respir Rev. 2023;32(167):220144. doi: 10.1183/16000617.0144-2022
  • Gauvreau GM, Bergeron C, Boulet LP, et al. Sounding the alarmins—the role of alarmin cytokines in asthma. Allergy. 2023;78(2):402–417. doi: 10.1111/all.15609
  • Majewski S, Tworek D, Szewczyk K, et al. Epithelial alarmin levels in exhaled breath condensate in patients with idiopathic pulmonary fibrosis: a pilot study. Clin Respir J. 2019;13(10):652–656. doi: 10.1111/crj.13075
  • Varricchi G, Ferri S, Pepys J, et al. Biologics and airway remodeling in severe asthma. Allergy. 2022;77(12):3538–3552. doi: 10.1111/all.15473
  • Donovan C, Hansbro PM. IL-33 in chronic respiratory disease: from preclinical to clinical studies. ACS Pharmacol Transl Sci. 2020;3(1):56–62. doi: 10.1021/acsptsci.9b00099
  • Gabryelska A, Kuna P, Antczak A, et al. IL-33 mediated inflammation in chronic respiratory diseases-understanding the role of the member of IL-1 superfamily. Front Immunol. 2019;10:692. doi: 10.3389/fimmu.2019.00692
  • Yi L, Cheng D, Zhang K, et al. Intelectin contributes to allergen-induced IL-25, IL-33, and TSLP expression and type 2 response in asthma and atopic dermatitis. Mucosal Immunol. 2017;10(6):1491–1503. doi: 10.1038/mi.2017.10
  • Zhang K, Feng Y, Liang Y, et al. Epithelial miR-206 targets CD39/extracellular ATP to upregulate airway IL-25 and TSLP in type 2-high asthma. JCI Insight. 2021;6:e148103, 148103. doi: 10.1172/jci.insight.148103
  • Beale J, Jayaraman A, Jackson DJ, et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci Transl Med. 2014;6(256):256ra134. doi: 10.1126/scitranslmed.3009124
  • Yang H, Wang H, Andersson U. Targeting inflammation driven by HMGB1. Front Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484. eCollection 2020.
  • Allegra A, Murdaca G, Gammeri L, et al. Alarmins and MicroRNAs, a New axis in the genesis of respiratory diseases: possible therapeutic implications. Int J Mol Sci. 2023;24(2):1783. doi: 10.3390/ijms24021783
  • Simpson J, Loh Z, Ullah MA, et al. Respiratory syncytial virus infection promotes necroptosis and HMGB1 release by airway epithelial cells. Am J Respir Crit Care Med. 2020;201(11):1358–1371. doi: 10.1164/rccm.201906-1149OC
  • Furci F, Murdaca G, Pelaia C, et al. TSLP and HMGB1: Inflammatory targets and potential biomarkers for precision Medicine in asthma and COPD. Biomedicines. 2023;11(2):437. doi: 10.3390/biomedicines11020437
  • Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity. 2018;49(4):740–753.e7. doi: 10.1016/j.immuni.2018.08.016
  • Wang W, Li Y, Lv Z, et al. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol. 2018;201(8):2221–2231. doi: 10.4049/jimmunol.1800709
  • Ying S, O’Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174:8183–8190. doi: 10.4049/jimmunol.174.12.8183
  • Préfontaine D, Nadigel J, Chouiali F, et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol. 2010;125(3):752–754. doi: 10.1016/j.jaci.2009.12.935
  • Kaur D, Gomez E, Doe C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk. Allergy. 2015;70(5):556–567. doi: 10.1111/all.12593
  • Préfontaine D, Lajoie-Kadoch S, Foley S, et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J Immunol. 2009 Oct 15;183(8):5094–5103. doi: 10.4049/jimmunol.0802387
  • Tang W, Smith SG, Beaudin S, et al. IL-25 and IL-25 receptor expression on eosinophils from subjects with allergic asthma. Int Arch Allergy Immunol. 2014;163(1):5–10. doi: 10.1159/000355331
  • Poulsen NN, Bjerregaard A, Khoo SK, et al. Airway interleukin-33 and type 2 cytokines in adult patients with acute asthma. Respir med. 2018;140:50–56. doi: 10.1016/j.rmed.2018.05.016
  • Momen T, Ahanchian H, Reisi M, et al. Comparison of interleukin-33 serum levels in asthmatic patients with a control group and relation with the severity of the disease. Int J Prev Med. 2017;8(1):65. doi: 10.4103/ijpvm.IJPVM_179_16
  • Southworth T, Pattwell C, Khan N, et al. Increased type 2 inflammation post rhinovirus infection in patients with moderate asthma. Cytokine. 2020;125:154857. doi: 10.1016/j.cyto.2019.154857
  • Paplińska-Goryca M, Grabczak EM, Dąbrowska M, et al. Sputum interleukin-25 correlates with asthma severity: a preliminary study. Postepy Dermatol Alergol. 2018;35(5):462–469. doi: 10.5114/ada.2017.71428
  • Li Y, Wang W, Lv Z, et al. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J Immunol. 2018;200(7):2253–2262. doi: 10.4049/jimmunol.1701455
  • Guo Z, Wu J, Zhao J, et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity. J Asthma. 2014;51(8):863–869. doi: 10.3109/02770903.2014.921196
  • Watanabe T, Asai K, Fujimoto H, et al. Increased levels of HMGB-1 and endogenous secretory RAGE in induced sputum from asthmatic patients. Respir med. 2011;105(4):519–525. doi: 10.1016/j.rmed.2010.10.016
  • Manti S, Leonardi S, Parisi GF, et al. High mobility group box 1: biomarker of inhaled corticosteroid treatment response in children with moderate-severe asthma. Allergy Asthma Proc. 2017;38(3):197–203. doi: 10.2500/aap.2017.38.4047
  • Hou C, Zhao H, Liu L, et al. High mobility group protein B1 (HMGB1) in asthma: comparison of patients with chronic obstructive pulmonary disease and healthy controls. Mol Med. 2011;17(7–8):807–815. doi: 10.2119/molmed.2010.00173
  • Paplińska-Goryca M, Nejman-Gryz P, Proboszcz M, et al. Expression of TSLP and IL-33 receptors on sputum macrophages of asthma patients and healthy subjects. J Asthma. 2020;57(1):1–10. doi: 10.1080/02770903.2018.1543435
  • Wang Y, Wang L, Hua S. Interleukin-33 in children with asthma: a systematic review and meta-analysis. Allergol Immunopathol (Madr). 2017;45(4):387–392. doi: 10.1016/j.aller.2016.12.007
  • Gasiuniene E, Janulaityte I, Zemeckiene Z, et al. Elevated levels of interleukin-33 are associated with allergic and eosinophilic asthma. Scand J Immunol. 2019;89(5):e12724. doi: 10.1111/sji.12724
  • Tsurikisawa N, Oshikata C, Sato T, et al. Low variability in peak expiratory flow predicts successful inhaled corticosteroid step-down in adults with asthma. J Allergy Clin Immunol Pract. 2018;6(3):972–979. doi: 10.1016/j.jaip.2017.10.036
  • Vrsalović R, Korošec P, Štefanović IM, et al. Value of thymic stromal lymphopoietin as a biomarker in children with asthma. Respir med. 2022;193:106757. doi: 10.1016/j.rmed.2022.106757
  • Seys SF, Grabowski M, Adriaensen W, et al. Sputum cytokine mapping reveals an ‘IL-5, IL-17A, IL-25-high’ pattern associated with poorly controlled asthma. Clin Exp Allergy. 2013;43(9):1009–1017. doi: 10.1111/cea.12125
  • Cheng D, Xue Z, Yi L, et al. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am J Respir Crit Care Med. 2014;190(6):639–648. doi: 10.1164/rccm.201403-0505OC
  • Cuppari C, Manti S, Chirico V, et al. Sputum high mobility group box-1 in asthmatic children: a noninvasive sensitive biomarker reflecting disease status. Ann Allergy Asthma Immunol. 2015;115(2):103–107. doi: 10.1016/j.anai.2015.06.008
  • Shim EJ, Chun E, Lee HS, et al. The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma. Clin Exp Allergy. 2012;42(6):958–965. doi: 10.1111/j.1365-2222.2012.03998.x
  • Zhou Y, Jiang Y, Wang W, et al. HMGB1 and RAGE levels in induced sputum correlate with asthma severity and neutrophil percentage. Hum Immunol. 2012;73(11):1171–1174. doi: 10.1016/j.humimm.2012.08.016
  • Mitchell PD, Salter BM, Oliveria JP, et al. IL-33 and its receptor ST2 after inhaled allergen challenge in allergic asthmatics. Int Arch Allergy Immunol. 2018;176(2):133–142. doi: 10.1159/000488015
  • Corrigan CJ, Wang W, Meng Q, et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J Allergy Clin Immunol. 2011;128(1):116–124. doi: 10.1016/j.jaci.2011.03.043
  • Chen S, Yu G, Xie J, et al. High-mobility group box-1 protein from CC10+ club cells promotes type 2 response in the later stage of respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L280–L290. doi: 10.1152/ajplung.00552.2017
  • Oczypok EA, Milutinovic PS, Alcorn JF, et al. Pulmonary receptor for advanced glycation end-products promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. J Allergy Clin Immunol. 2015;136(3):747–756.e4. doi: 10.1016/j.jaci.2015.03.011
  • Aneas I, Decker DC, Howard CL, et al. Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat Commun. 2021;12(1):6115. doi: 10.1038/s41467-021-26347-z
  • Smith D, Helgason H, Sulem P, et al. A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma. PLoS Genet. 2017;13(3):e1006659. doi: 10.1371/journal.pgen.1006659
  • Moorehead A, Hanna R, Heroux D, et al. A thymic stromal lymphopoietin polymorphism may provide protection from asthma by altering gene expression. Clin Exp Allergy. 2020;50(4):471–478. doi: 10.1111/cea.13568
  • Calvén J, Yudina Y, Hallgren O, et al. Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: role of endosomal TLR3 and cytosolic RIG-I-like helicases. J Innate Immun. 2012;4(1):86–99. doi: 10.1159/000329131
  • Anzalone G, Albano GD, Montalbano AM, et al. IL-17A-associated IKK-α signaling induced TSLP production in epithelial cells of COPD patients. Exp Mol Med. 2018;50(10):1–12. doi: 10.1038/s12276-018-0158-2
  • Smelter DF, Sathish V, Thompson MA, et al. Thymic stromal lymphopoietin in cigarette smoke-exposed human airway smooth muscle. J Immunol. 2010;185(5):3035–3040. doi: 10.4049/jimmunol.1000252
  • Byers DE, Alexander-Brett J, Patel AC, et al. Long-term IL-33–producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest. 2013;123(9):3967–3982. doi: 10.1172/JCI65570
  • Aizawa H, Koarai A, Shishikura Y, et al. Oxidative stress enhances the expression of IL-33 in human airway epithelial cells. Respir Res. 2018;19(1):52. doi: 10.1186/s12931-018-0752-9
  • Kearley J, Silver JS, Sanden C, et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity. 2015;42(3):566–579. doi: 10.1016/j.immuni.2015.02.011
  • Tanabe T, Shimokawaji T, Kanoh S, et al. IL-33 stimulates CXCL8/IL-8 secretion in goblet cells but not normally differentiated airway cells. Clin Exp Allergy. 2014;44(4):540–552. doi: 10.1111/cea.12283
  • De Falco G, Colarusso C, Terlizzi M, et al. Chronic obstructive pulmonary disease-derived circulating cells release IL-18 and IL-33 under ultrafine particulate matter exposure in a caspase-1/8-independent manner. Front Immunol. 2017;8:1415. doi: 10.3389/fimmu.2017.01415
  • Li Q, Hu Y, Chen Y, et al. IL-33 induces production of autoantibody against autologous respiratory epithelial cells: a potential mechanism for the pathogenesis of COPD. Immunology. 2019;157(2):137–150. doi: 10.1111/imm.13054
  • Kim SW, Rhee CK, Kim KU, et al. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:395–402. doi: 10.2147/COPD.S120445
  • Sun BB, Ma LJ, Qi Y, et al. Correlation of IL-33 gene polymorphism with chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2019;23(14):6277–6282. doi: 10.26355/eurrev_201907_18449
  • Tworek D, Majewski S, Szewczyk K, et al. The association between airway eosinophilic inflammation and IL-33 in stable non-atopic COPD. Respir Res. 2018;19(1):108. doi: 10.1186/s12931-018-0807-y
  • Deng C, Peng N, Tang Y, et al. Roles of IL-25 in type 2 inflammation and autoimmune pathogenesis. Front Immunol. 2021;12:691559. doi: 10.3389/fimmu.2021.691559
  • Ferhani N, Letuve S, Kozhich A, et al. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181(9):917–927. doi: 10.1164/rccm.200903-0340OC
  • Cheng Y, Wang D, Wang B, et al. HMGB1 translocation and release mediate cigarette smoke–induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway. MBoC. 2017;28(1):201–209. doi: 10.1091/mbc.E16-02-0126
  • Pouwels SD, Nawijn MC, Bathoorn E, et al. Increased serum levels of LL37, HMGB1 and S100A9 during exacerbation in COPD patients. Eur Respir J. 2015;45(5):1482–1485. doi: 10.1183/09031936.00158414
  • Lee JU, Chang HS, Lee HJ, et al. Upregulation of interleukin-33 and thymic stromal lymphopoietin levels in the lungs of idiopathic pulmonary fibrosis. BMC Pulm Med. 2017;17(1):39. doi: 10.1186/s12890-017-0380-z
  • Luzina IG, Lockatell V, Courneya JP, et al. Full-length IL-33 augments pulmonary fibrosis in an ST2- and Th2-independent, non-transcriptomic fashion. Cell Immunol. 2023;383:104657. doi: 10.1016/j.cellimm.2022.104657
  • Luzina IG, Kopach P, Lockatell V, et al. Interleukin-33 potentiates bleomycin-induced lung injury. Am J Respir Cell Mol Biol. 2013;49(6):999–1008. doi: 10.1165/rcmb.2013-0093OC
  • Li D, Guabiraba R, Besnard AG, et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol. 2014;134(6):1422–1432.e11. doi: 10.1016/j.jaci.2014.05.011
  • Zhao Y, De Los Santos FG, Wu Z, et al. An ST2-dependent role of bone marrow-derived group 2 innate lymphoid cells in pulmonary fibrosis. J Pathol. 2018;245:399–409. doi: 10.1002/path.5092
  • Majewski S, Szewczyk K, Białas AJ, et al. Epithelial alarmins in serum and exhaled breath in patients with idiopathic pulmonary fibrosis: a prospective one-year follow-up cohort study. JCM. 2019;8(10):1590. doi: 10.3390/jcm8101590
  • Hamada N, Maeyama T, Kawaguchi T, et al. The role of high mobility group box1 in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2008;39(4):440–447. doi: 10.1165/rcmb.2007-0330OC
  • Yamaguchi K, Iwamoto H, Sakamoto S, et al. Serum high-mobility group box 1 is associated with the onset and severity of acute exacerbation of idiopathic pulmonary fibrosis. Respirology. 2020;25(3):275–280. doi: 10.1111/resp.13634
  • Kodera Y, Kohno T, Konno T, et al. HMGB1 enhances epithelial permeability via p63/TGF-β signaling in lung and terminal bronchial epithelial cells. Tissue Barr. 2020;8(4):1805997. doi: 10.1080/21688370.2020.1805997
  • Wang Q, Wang J, Wang J, et al. HMGB1 induces lung fibroblast to myofibroblast differentiation through NF-κB-mediated TGF-β1 release. Molecular Medicine Reports. 2017;15(5):3062–3068. doi: 10.3892/mmr.2017.6364
  • Farias R, Rousseau S. The TAK1→IKKβ→TPL2→MKK1/MKK2 signaling cascade regulates IL-33 expression in cystic fibrosis airway epithelial cells following infection by Pseudomonas aeruginosa. Front Cell Dev Biol. 2015;3:87. doi: 10.3389/fcell.2015.00087
  • Manti S, Parisi GF, Papale M, et al. Type 2 inflammation in cystic fibrosis: new insights. Pediatr Allergy Immunol. 2022;33(Suppl 27):15–17. doi: 10.1111/pai.13619
  • Roussel L, Farias R, Rousseau S. IL-33 is expressed in epithelia from patients with cystic fibrosis and potentiates neutrophil recruitment. J Allergy Clin Immunol. 2013;131(3):913–916. doi: 10.1016/j.jaci.2012.10.019
  • Tiringer K, Treis A, Kanolzer S, et al. Differential expression of IL-33 and HMGB1 in the lungs of stable cystic fibrosis patients. Eur Respir J. 2014;44(3):802–805. doi: 10.1183/09031936.00046614
  • Chirico V, Lacquaniti A, Leonardi S, et al. Acute pulmonary exacerbation and lung function decline in patients with cystic fibrosis: high-mobility group box 1 (HMGB1) between inflammation and infection. Clinical Microbiology And Infection. 2015;21(4):368.e1–9. doi: 10.1016/j.cmi.2014.11.004
  • Entezari M, Weiss DJ, Sitapara R, et al. Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against Pseudomonas Aeruginosa pneumonia in cystic fibrosis. Mol Med. 2012;18(3):477–485. doi: 10.2119/molmed.2012.00024
  • Chan R, RuiWen Kuo C, Lipworth B. Pragmatic clinical Perspective on biologics for severe refractory type 2 asthma. J Allergy Clin Immunol Pract. 2020;8(10):3363–3370. doi: 10.1016/j.jaip.2020.06.048
  • Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–946. doi: 10.1056/NEJMoa1704064
  • Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–1809. doi: 10.1056/NEJMoa2034975
  • Wechsler ME, Menzies-Gow A, Brightling CE, et al. Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Respir Med. 2022;10(7):650–660. doi: 10.1016/S2213-2600(21)00537-3
  • Menzies-Gow A, Wechsler M. DESTINATION: tezepelumab long-term safety and efficacy versus placebo in patients with severe, uncontrolled asthma. Thorax. 2022;77:A32.
  • Sverrild A, Hansen S, Hvidtfeldt M, et al. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur Respir J. 2022;59(1):2101296. doi: 10.1183/13993003.01296-2021
  • Diver S, Khalfaoui L, Emson C, et al. Effect of tezepelumab on airway inflammatory cells, remodeling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. The Lancet Respiratory Medicine. 2021;9(11):1299–1312. doi: 10.1016/S2213-2600(21)00226-5
  • Novartis Pharmaceuticals. A randomized, subject- and investigator-blinded, placebo-controlled, parallel design, bronchoprovocation study to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of multiple doses of inhaled CSJ117 in adult subjects with mild atopic asthma. Report No. NCT03138811. Available from: https://clinicaltrials.gov/ct2/show/NCT03138811
  • Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. N Engl J Med. 2021;385(18):1656–1668. doi: 10.1056/NEJMoa2024257
  • Kelsen SG, Agache IO, Soong W, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J Allergy Clin Immunol. 2021;148(3):790–798. doi: 10.1016/j.jaci.2021.03.044
  • Ballantyne SJ, Barlow JL, Jolin HE, et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol. 2007;120(6):1324–1331. doi: 10.1016/j.jaci.2007.07.051
  • Busse WW, Holgate S, Kerwin E, et al. Randomized, Double-blind, placebo-controlled study of brodalumab, a human anti–IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–1302. doi: 10.1164/rccm.201212-2318OC
  • Donovan T, Milan SJ, Wang R, et al. Anti-IL-5 therapies for chronic obstructive pulmonary disease. Cochrane Database Of Systematic Reviews. 2020;12(12):CD013432. doi: 10.1002/14651858.CD013432.pub2
  • Rabe KF, Celli BR, Wechsler ME, et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir Med. 2021;9:1288–1298. doi: 10.1016/S2213-2600(21)00167-3
  • Yousuf AJ, Mohammed S, Carr L, et al. Astegolimab, an anti-ST2, in chronic obstructive pulmonary disease (COPD-ST2OP): a phase 2a, placebo-controlled trial. Lancet Respir Med. 2022;10(5):469–477. doi: 10.1016/S2213-2600(21)00556-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.