292
Views
0
CrossRef citations to date
0
Altmetric
Review

Interactions between calcium regulatory pathways and mechanosensitive channels in airways

, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 903-917 | Received 20 Sep 2023, Accepted 25 Oct 2023, Published online: 06 Nov 2023

References

  • El-Husseini ZW, Vonk JM, van den Berge M, et al. Association of asthma genetic variants with asthma-associated traits reveals molecular pathways of eosinophilic asthma. Clin Transl Allergy. 2023;13(4):e12239. doi: 10.1002/clt2.12239
  • Bergantin LB. The interplay between asthma and other diseases: role of Ca2+/cAMP Signalling. Endocr Metab Immune Disord Drug Targets. 2020;20(3):321–327. doi: 10.2174/1871530319666190828145854
  • Zeng R, Wang Z, Zhang J, et al. Type 1 diabetes and asthma: a systematic review and meta-analysis of observational studies. Endocrine. 2022;75(3):709–717. doi: 10.1007/s12020-021-02973-x
  • Cazzola M, Rogliani P, Ora J, et al. Asthma and comorbidities: recent advances. Pol Arch Intern Med. 2022;132(4). doi: 10.20452/pamw.16250
  • Gergen PJ. Adult-onset asthma and cancer: Causal or coincidental? J Allergy Clin Immunol. 2021;147(1):52–53. doi: 10.1016/j.jaci.2020.10.028
  • Woodrow JS, Sheats MK, Cooper B, et al. Asthma: the use of animal models and their translational utility. Cells. 2023;12(7). doi: 10.3390/cells12071091
  • Borkar NA, Roos B, Prakash YS, et al. Nicotinic alpha7 acetylcholine receptor (alpha7nAChR) in human airway smooth muscle. Arch Biochem Biophys. 2021;706:108897. doi: 10.1016/j.abb.2021.108897
  • Khalfaoui L, Mukhtasimova N, Kelley B, et al. Functional alpha7 nicotinic receptors in human airway smooth muscle increase intracellular calcium concentration and contractility in asthmatics. Am J Physiol Lung Cell Mol Physiol. 2023;325(1):L17–L29. doi: 10.1152/ajplung.00260.2022
  • Borkar NA, Combs CK, Sathish V. Sex steroids effects on asthma: a network perspective of immune and airway cells. Cells. 2022;11(14):2238. doi: 10.3390/cells11142238
  • Borkar NA, Sathish V. Sex steroids and their influence in lung diseases across the lifespan. Silveyra P, Tigno, X.T. editor. Cham: Springer; 2021. p. 39–72.
  • Perusquia M, Flores-Soto E, Sommer B, et al. Testosterone-induced relaxation involves L-type and store-operated Ca2+ channels blockade, and PGE 2 in guinea pig airway smooth muscle. Pflugers Arch - Eur J Physiol. 2015;467(4):767–777. doi: 10.1007/s00424-014-1534-y
  • Bazan-Perkins B, Sanchez-Guerrero E, Carbajal V, et al. Sarcoplasmic reticulum Ca2+ depletion by caffeine and changes of [Ca2+](i) during refilling in bovine airway smooth muscle cells. Arch Med Res. 2000;31(6):558–563. doi: 10.1016/S0188-4409(00)00156-9
  • Jairaman A, Maguire CH, Schleimer RP, et al. Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells. Sci Rep. 2016;6(1):32311. doi: 10.1038/srep32311
  • Genovese M, Borrelli A, Venturini A, et al. TRPV4 and purinergic receptor signalling pathways are separately linked in airway epithelia to CFTR and TMEM16A chloride channels. J Physiol. 2019;597(24):5859–5878. doi: 10.1113/JP278784
  • Tiruppathi C, Minshall RD, Paria BC, et al. Role of Ca2+ signaling in the regulation of endothelial permeability. Vasc Pharmacol. 2002;39(4–5):173–185. doi: 10.1016/S1537-1891(03)00007-7
  • Johnson MT, Xin P, Benson JC, et al. STIM1 is a core trigger of airway smooth muscle remodeling and hyperresponsiveness in asthma. Proc Natl Acad Sci U S A. 2022;119(1). doi: 10.1073/pnas.2114557118
  • Vicencio JM, Lavandero S, Szabadkai G. Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease. Cell Calcium. 2010;47(2):112–121. doi: 10.1016/j.ceca.2009.12.013
  • Eisner DA, Caldwell JL, Kistamas K, et al. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121(2):181–195. doi: 10.1161/CIRCRESAHA.117.310230
  • Meldolesi J, Pozzan T. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci. 1998;23(1):10–14. doi: 10.1016/S0968-0004(97)01143-2
  • Lytton J, Westlin M, Burk SE, et al. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992;267(20):14483–14489. doi: 10.1016/S0021-9258(19)49738-X
  • Thakore P, Earley S. STIM1 is the key that unlocks airway smooth muscle remodeling and hyperresponsiveness during asthma. Cell Calcium. 2022;104:102589. doi: 10.1016/j.ceca.2022.102589
  • Ding J, Jin Z, Yang X, et al. Plasma membrane Ca(2+)-permeable channels and sodium/calcium exchangers in tumorigenesis and tumor development of the upper gastrointestinal tract. Cancer Lett. 2020;475:14–21. doi: 10.1016/j.canlet.2020.01.026
  • Tschumperlin DJ, Drazen JM. Mechanical stimuli to airway remodeling. Am J Respir Crit Care Med. 2001;164(10 Pt 2):S90–4. doi: 10.1164/ajrccm.164.supplement_2.2106060
  • Asano S, Ito S, Morosawa M, et al. Cyclic stretch enhances reorientation and differentiation of 3-D culture model of human airway smooth muscle. Biochem Biophys Rep. 2018;16:32–38. doi: 10.1016/j.bbrep.2018.09.003
  • Fahy JV. Goblet cell and mucin gene abnormalities in asthma. Chest. 2002;122(6 Suppl):320S–326S. doi: 10.1378/chest.122.6_suppl.320S
  • Zhou J, Zhou XD, Xu R, et al. The degradation of airway epithelial tight junctions in asthma under high airway pressure is probably mediated by Piezo-1. Front Physiol. 2021;12:637790. doi: 10.3389/fphys.2021.637790
  • Cao A, Gao W, Sawada T, et al. Transient receptor potential channel vanilloid 1 contributes to facial mechanical hypersensitivity in a mouse model of atopic asthma. Lab Invest. 2023;103(6):100149. doi: 10.1016/j.labinv.2023.100149
  • Reyes-Garcia J, Carbajal-Garcia A, Montano LM. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur J Pharmacol. 2022;915:174692. doi: 10.1016/j.ejphar.2021.174692
  • Li N, He Y, Yang G, et al. Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir Res. 2019;20(1):91. doi: 10.1186/s12931-019-1050-x
  • Aravamudan B, Thompson MA, Pabelick CM, et al. Mitochondria in lung diseases. Expert Rev Respir Med. 2013;7(6):631–646. doi: 10.1586/17476348.2013.834252
  • Aravamudan B, VanOosten SK, Meuchel LW, et al. Caveolin-1 knockout mice exhibit airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol. 2012;303(8):L669–81. doi: 10.1152/ajplung.00018.2012
  • Chiarella SE, Cardet JC, YS P. Sex, cells, and asthma. Mayo Clin Proc. 2021;96(7):1955–1969. doi: 10.1016/j.mayocp.2020.12.007
  • Kistemaker LEM, Prakash YS. Airway innervation and plasticity in asthma. Physiology. 2019;34(4):283–298. doi: 10.1152/physiol.00050.2018
  • Mayer CA, Roos B, Teske J, et al. Calcium-sensing receptor and CPAP-induced neonatal airway hyperreactivity in mice. Pediatr Res. 2022;91(6):1391–1398. doi: 10.1038/s41390-021-01540-4
  • Pabelick CM, Sieck GC, Prakash YS. Invited review: significance of spatial and temporal heterogeneity of calcium transients in smooth muscle. J Appl Physiol (1985). 2001;91(1):488–496. doi: 10.1152/jappl.2001.91.1.488
  • Prakash YS. Asthma without borders. Am J Physiol Lung Cell Mol Physiol. 2020;318(5):L1001–L3. doi: 10.1152/ajplung.00114.2020
  • Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol. 2013;305(12):L912–33. doi: 10.1152/ajplung.00259.2013
  • Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol. 2016;311(6):L1113–L40. doi: 10.1152/ajplung.00370.2016
  • Roesler AM, Wicher SA, Ravix J, et al. Calcium sensing receptor in developing human airway smooth muscle. J Cell Physiol. 2019;234(8):14187–14197. doi: 10.1002/jcp.28115
  • Thompson MA, Prakash YS, Pabelick CM. The role of caveolae in the pathophysiology of lung diseases. Expert Rev Respir Med. 2014;8(1):111–122. doi: 10.1586/17476348.2014.855610
  • Wray S, Burdyga T. Sarcoplasmic reticulum function in smooth muscle. Physiol Rev. 2010;90(1):113–178. doi: 10.1152/physrev.00018.2008
  • Rossi D, Barone V, Giacomello E, et al. The sarcoplasmic reticulum: an organized patchwork of specialized domains. Traffic. 2008;9(7):1044–1049. doi: 10.1111/j.1600-0854.2008.00717.x
  • Zhang Z, Wang Z, Liu Y, et al. Stromal interaction molecule 1 (STIM1) is a potential Prognostic biomarker and correlates with immune infiltrates in solid tumors. J Environ Pathol Toxicol Oncol. 2023;42(2):11–30. doi: 10.1615/JEnvironPatholToxicolOncol.2022043693
  • Horvath F, Berlansky S, Maltan L, et al. Swing-out opening of stromal interaction molecule 1. Protein Sci. 2023;32(3):e4571. doi: 10.1002/pro.4571
  • Pacheco J, Sampieri A, Vaca L. STIM1: the lord of the rings? Cell Calcium. 2023;112:102742. doi: 10.1016/j.ceca.2023.102742
  • Novello MJ, Zhu J, Feng Q, et al. Structural elements of stromal interaction molecule function. Cell Calcium. 2018;73:88–94. doi: 10.1016/j.ceca.2018.04.006
  • Gudlur A, Zeraik AE, Hirve N, et al. Calcium sensing by the STIM1 ER-luminal domain. Nat Commun. 2018;9(1):4536. doi: 10.1038/s41467-018-06816-8
  • Zheng L, Stathopulos PB, Schindl R, et al. Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci U S A. 2011;108(4):1337–1342. doi: 10.1073/pnas.1015125108
  • Collins SR, Meyer T. Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems. Trends Cell Biol. 2011;21(4):202–211. doi: 10.1016/j.tcb.2011.01.002
  • Spinelli AM, Gonzalez-Cobos JC, Zhang X, et al. Airway smooth muscle STIM1 and Orai1 are upregulated in asthmatic mice and mediate PDGF-activated SOCE, CRAC currents, proliferation, and migration. Pflugers Arch - Eur J Physiol. 2012;464(5):481–492. doi: 10.1007/s00424-012-1160-5
  • Zou JJ, Gao YD, Geng S, et al. Role of STIM1/Orai1-mediated store-operated Ca(2)(+) entry in airway smooth muscle cell proliferation. J Appl Physiol (1985). 2011;110(5):1256–1263. doi: 10.1152/japplphysiol.01124.2010
  • Huang JH, Gao HW, Gao DD, et al. Exercise reduces airway smooth muscle contraction in asthmatic rats via inhibition of IL-4 secretion and store-operated Ca(2+) entry pathway. Allergy Asthma Immunol Res. 2023;15(3):361–373. doi: 10.4168/aair.2023.15.3.361
  • Perez JF, Sanderson MJ. The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J Gen Physiol. 2005;125(6):535–553. doi: 10.1085/jgp.200409216
  • Sanderson MJ, Delmotte P, Bai Y, et al. Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc Am Thorac Soc. 2008;5(1):23–31. doi: 10.1513/pats.200704-050VS
  • Prakash YS, Kannan MS, Walseth TF, et al. Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am J Physiol. 1998;274(6):C1653–60. doi: 10.1152/ajpcell.1998.274.6.C1653
  • Zeng Z, Cheng M, Li M, et al. Inherent differences of small airway contraction and Ca(2+) oscillations in airway smooth muscle cells between BALB/c and C57BL/6 mouse strains. Front Cell Dev Biol. 2023;11:1202573. doi: 10.3389/fcell.2023.1202573
  • Kalidhindi RSR, Katragadda R, Beauchamp KL, et al. Androgen receptor-mediated regulation of intracellular calcium in human airway smooth muscle cells. Cell Physiol Biochem. 2019;53(1):215–228.
  • Oh-Hora M. Calcium signaling in the development and function of T-lineage cells. Immunol Rev. 2009;231(1):210–224. doi: 10.1111/j.1600-065X.2009.00819.x
  • Deng F, Yu C, Zhong S, et al. Store-operated calcium entry enhances the polarization and chemotaxis of neutrophils in the peripheral venous blood of patients with bronchial asthma by upregulating ERM protein. J Thorac Dis. 2023;15(4):2051–2067. doi: 10.21037/jtd-23-467
  • Brandman O, Liou J, Park WS, et al. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell. 2007;131(7):1327–1339. doi: 10.1016/j.cell.2007.11.039
  • Boeck A, Landgraf-Rauf K, Vogelsang V, et al. Ca(2+) and innate immune pathways are activated and differentially expressed in childhood asthma phenotypes. Pediatr Allergy Immunol. 2018;29(8):823–833. doi: 10.1111/pai.12971
  • Berra-Romani R, Vargaz-Guadarrama A, Sanchez-Gomez J, et al. Histamine activates an intracellular Ca(2+) signal in normal human lung fibroblast WI-38 cells. Front Cell Dev Biol. 2022;10:991659. doi: 10.3389/fcell.2022.991659
  • Yoast RE, Emrich SM, Zhang X, et al. The native ORAI channel trio underlies the diversity of Ca(2+) signaling events. Nat Commun. 2020;11(1):2444. doi: 10.1038/s41467-020-16232-6
  • Spinelli AM, Trebak M. Orai channel-mediated Ca2+ signals in vascular and airway smooth muscle. Am J Physiol Cell Physiol. 2016;310(6):C402–13. doi: 10.1152/ajpcell.00355.2015
  • Dwivedi R, Drumm BT, Griffin CS, et al. Excitatory cholinergic responses in mouse primary bronchial smooth muscle require both Ca(2+) entry via l-type Ca(2+) channels and store operated Ca(2+) entry via Orai channels. Cell Calcium. 2023;112:102721. doi: 10.1016/j.ceca.2023.102721
  • Sutovska M, Kocmalova M, Franova S, et al. Pharmacodynamic evaluation of RP3128, a novel and potent CRAC channel inhibitor in guinea pig models of allergic asthma. Eur J Pharmacol. 2016;772:62–70. doi: 10.1016/j.ejphar.2015.12.047
  • Sutovska M, Kocmalova M, Joskova M, et al. The effect of long-term administered CRAC channels blocker on the functions of respiratory epithelium in guinea pig allergic asthma model. Gen Physiol Biophys. 2015;34(2):167–176. doi: 10.4149/gpb_2014031
  • Samanta K, Bakowski D, Parekh AB, et al. Key role for store-operated Ca2+ channels in activating gene expression in human airway bronchial epithelial cells. PLoS One. 2014;9(8):e105586. doi: 10.1371/journal.pone.0105586
  • Esteve C, Gonzalez J, Gual S, et al. Discovery of 7-azaindole derivatives as potent Orai inhibitors showing efficacy in a preclinical model of asthma. Bioorg Med Chem Lett. 2015;25(6):1217–1222. doi: 10.1016/j.bmcl.2015.01.063
  • Komlosi ZI, van de Veen W, Kovacs N, et al. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med. 2022;85:100995. doi: 10.1016/j.mam.2021.100995
  • Feske S, Draeger R, Peter HH, et al. The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. J Immunol. 2000;165(1):297–305. doi: 10.4049/jimmunol.165.1.297
  • Wang YH, Noyer L, Kahlfuss S, et al. Distinct roles of ORAI1 in T cell-mediated allergic airway inflammation and immunity to influenza a virus infection. Sci Adv. 2022;8(40):eabn6552. doi: 10.1126/sciadv.abn6552
  • Wrennall JA, Ahmad S, Worthington EN, et al. A SPLUNC1 peptidomimetic inhibits Orai1 and reduces inflammation in a murine allergic asthma model. Am J Respir Cell Mol Biol. 2022;66(3):271–282. doi: 10.1165/rcmb.2020-0452OC
  • Thaikoottathil JV, Martin RJ, Di PY, et al. SPLUNC1 deficiency enhances airway eosinophilic inflammation in mice. Am J Respir Cell Mol Biol. 2012;47(2):253–260. doi: 10.1165/rcmb.2012-0064OC
  • Wu T, Huang J, Moore PJ, et al. Identification of BPIFA1/SPLUNC1 as an epithelium-derived smooth muscle relaxing factor. Nat Commun. 2017;8(1):14118. doi: 10.1038/ncomms14118
  • Ashmole I, Duffy SM, Leyland ML, et al. The contribution of Orai(CRACM)1 and Orai(CRACM)2 channels in store-operated Ca2+ entry and mediator release in human lung mast cells. PLoS One. 2013;8(9):e74895. doi: 10.1371/journal.pone.0074895
  • Ashmole I, Duffy SM, Leyland ML, et al. Cracm/orai ion channel expression and function in human lung mast cells. J Allergy Clin Immunol. 2012;129(6):1628–35 e2. doi: 10.1016/j.jaci.2012.01.070
  • Xiang LL, Wan QQ, Wang YM, et al. IL-13 regulates Orai1 expression in human bronchial smooth muscle cells and airway remodeling in asthma mice model via LncRNA H19. J Asthma Allergy. 2022;15:1245–1261. doi: 10.2147/JAA.S360381
  • Demydenko K, Ekhteraei-Tousi S, Roderick HL. Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease. Philos Trans R Soc Lond B Biol Sci. 2022;377(1864):20210319. doi: 10.1098/rstb.2021.0319
  • Thillaiappan NB, Chakraborty P, Hasan G, et al. IP(3) receptors and Ca(2+) entry. Biochim Biophys Acta, Mol Cell Res. 2019;1866(7):1092–1100. doi: 10.1016/j.bbamcr.2018.11.007
  • Bezprozvanny I, Watras J, Ehrlich BE. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991;351(6329):751–754. doi: 10.1038/351751a0
  • Huang AS, Tong BC, Hung HC, et al. Targeting calcium signaling by inositol trisphosphate receptors: a novel mechanism for the anti-asthmatic effects of houttuynia cordata. Biomed Pharmacother. 2023;164:114935. doi: 10.1016/j.biopha.2023.114935
  • Zhao C, Wu AY, Yu X, et al. Microdomain elements of airway smooth muscle in calcium regulation and cell proliferation. J Physiol Pharmacol. 2018;69(2). doi: 10.26402/jpp.2018.2.01
  • An TJ, Kim JH, Hur J, et al. Tiotropium bromide improves neutrophilic asthma by recovering histone deacetylase 2 activity. J Korean Med Sci. 2023;38(12):e91. doi: 10.3346/jkms.2023.38.e91
  • Mikoshiba K, Wakelam MJO. The IP3 receptor/Ca2+ channel and its cellular function. Biochem Soc Symp. 2007;74(74):9–22. doi:10.1042/BSS2007c02
  • Matsumoto H, Hirata Y, Otsuka K, et al. Interleukin-13 enhanced Ca2+ oscillations in airway smooth muscle cells. Cytokine. 2012;57(1):19–24. doi: 10.1016/j.cyto.2011.10.014
  • Tao FC, Tolloczko B, Mitchell CA, et al. Inositol (1,4,5)trisphosphate metabolism and enhanced calcium mobilization in airway smooth muscle of hyperresponsive rats. Am J Respir Cell Mol Biol. 2000;23(4):514–520. doi: 10.1165/ajrcmb.23.4.3966
  • Liu J, Zhang Y, Li Q, et al. An improved method for guinea pig airway smooth muscle cell culture and the effect of SPFF on intracellular calcium. Mol Med Rep. 2014;10(3):1309–1314. doi: 10.3892/mmr.2014.2385
  • Ye L, Zeng Q, Ling M, et al. Inhibition of IP3R/Ca2+ dysregulation protects mice from ventilator-induced lung injury via endoplasmic reticulum and mitochondrial pathways. Front Immunol. 2021;12:729094. doi: 10.3389/fimmu.2021.729094
  • Rosa N, Shabardina V, Ivanova H, et al. Tracing the evolutionary history of Ca(2+)-signaling modulation by human Bcl-2: insights from the capsaspora owczarzaki IP(3) receptor ortholog. Biochim Biophys Acta, Mol Cell Res. 2021;1868(12):119121. doi: 10.1016/j.bbamcr.2021.119121
  • Ivanova H, Vervliet T, Monaco G, et al. Bcl-2-protein family as modulators of IP 3 receptors and other organellar Ca 2+ channels. Cold Spring Harb Perspect Biol. 2020;12(4):a035089. doi: 10.1101/cshperspect.a035089
  • White C, Li C, Yang J, et al. The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol. 2005;7(10):1021–1028. doi: 10.1038/ncb1302
  • Rosa N, Ivanova H, Wagner LE 2nd, et al. Bcl-xL acts as an inhibitor of IP(3)R channels, thereby antagonizing Ca(2+)-driven apoptosis. Cell Death Differ. 2022;29(4):788–805. doi: 10.1038/s41418-021-00894-w
  • Fang T, Wang M, Xiao H, et al. Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol. 2019;35(6):493–502. doi: 10.1007/s10565-019-09473-9
  • Sachdeva K, Do DC, Zhang Y, et al. Environmental exposures and asthma development: autophagy, Mitophagy, and cellular senescence. Front Immunol. 2019;10:2787. doi: 10.3389/fimmu.2019.02787
  • Boyman L, Karbowski M, Lederer WJ. Regulation of mitochondrial ATP production: Ca(2+) signaling and quality control. Trends Mol Med. 2020;26(1):21–39. doi: 10.1016/j.molmed.2019.10.007
  • Qian L, Mehrabi Nasab E, Athari SM, et al. Mitochondria signaling pathways in allergic asthma. J Investig Med. 2022;70(4):863–882. doi: 10.1136/jim-2021-002098
  • Chellappan DK, Paudel KR, Tan NW, et al. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion. 2022;67:15–37. doi: 10.1016/j.mito.2022.09.003
  • Tagashira H, Bhuiyan MS, Shioda N, et al. Fluvoxamine rescues mitochondrial Ca2+ transport and ATP production through sigma(1)-receptor in hypertrophic cardiomyocytes. Life Sci. 2014;95(2):89–100. doi: 10.1016/j.lfs.2013.12.019
  • Diaz-Vegas AR, Cordova A, Valladares D, et al. Mitochondrial Calcium Increase Induced by RyR1 and IP3R Channel Activation After Membrane Depolarization Regulates Skeletal Muscle Metabolism. Front Physiol. 2018;9:791. doi: 10.3389/fphys.2018.00791
  • Decuypere JP, Monaco G, Missiaen L, et al. IP(3) receptors, mitochondria, and Ca signaling: implications for aging. J Aging Res. 2011;2011:920178. doi: 10.4061/2011/920178
  • NavaneethaKrishnan S, Law V, Lee J, et al. Cdk5 regulates IP3R1-mediated Ca(2+) dynamics and Ca(2+)-mediated cell proliferation. Cell Mol Life Sci. 2022;79(9):495. doi: 10.1007/s00018-022-04515-8
  • Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009;89(4):1341–1378. doi: 10.1152/physrev.00032.2008
  • Alvarez-Santos MD, Alvarez-Gonzalez M, Eslava-De-Jesus E, et al. Role of airway smooth muscle cell phenotypes in airway tone and obstruction in guinea pig asthma model. Allergy, Asthma Clin Immunol. 2022;18(1):3. doi: 10.1186/s13223-022-00645-7
  • Mahn K, Ojo OO, Chadwick G, et al. Ca(2+) homeostasis and structural and functional remodelling of airway smooth muscle in asthma. Thorax. 2010;65(6):547–552. doi: 10.1136/thx.2009.129296
  • Prasad V, Okunade GW, Miller ML, et al. Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res Commun. 2004;322(4):1192–1203. doi: 10.1016/j.bbrc.2004.07.156
  • Hovnanian A. SERCA pumps and human diseases. Subcell Biochem. 2007;45:337–363.
  • Mahn K, Hirst SJ, Ying S, et al. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci U S A. 2009;106(26):10775–10780. doi: 10.1073/pnas.0902295106
  • Rieg AD, Suleiman S, Anker C, et al. Platelet-derived growth factor (PDGF)-BB regulates the airway tone via activation of MAP2K, thromboxane, actin polymerisation and Ca(2+)-sensitisation. Respir Res. 2022;23(1):189. doi: 10.1186/s12931-022-02101-x
  • Sathish V, Thompson MA, Bailey JP, et al. Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L26–34. doi: 10.1152/ajplung.00026.2009
  • Aravamudan B, Thompson M, Pabelick C, et al. Brain-derived neurotrophic factor induces proliferation of human airway smooth muscle cells. J Cell Mol Med. 2012;16(4):812–823. doi: 10.1111/j.1582-4934.2011.01356.x
  • Prakash YS, Thompson MA, Pabelick CM. Brain-derived neurotrophic factor in TNF-alpha modulation of Ca2+ in human airway smooth muscle. Am J Respir Cell Mol Biol. 2009;41(5):603–611. doi: 10.1165/rcmb.2008-0151OC
  • Abcejo AJ, Sathish V, Smelter DF, et al. Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle. PLoS One. 2012;7(8):e44343. doi: 10.1371/journal.pone.0044343
  • Selno ATH, Sumbayev VV, Gibbs BF. IgE-dependent human basophil responses are inversely associated with the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA). Front Immunol. 2022;13:1052290. doi: 10.3389/fimmu.2022.1052290
  • Qaisar R, Qayum M, Muhammad T. Reduced sarcoplasmic reticulum Ca(2+) ATPase activity underlies skeletal muscle wasting in asthma. Life Sci. 2021;273:119296. doi: 10.1016/j.lfs.2021.119296
  • Kruglikov IL, Scherer PE. Caveolin as a universal target in dermatology. Int J Mol Sci. 2019;21(1):80. doi: 10.3390/ijms21010080
  • Wicher SA, Prakash YS, Pabelick CM. Caveolae, caveolin-1 and lung diseases of aging. Expert Rev Respir Med. 2019;13(3):291–300. doi: 10.1080/17476348.2019.1575733
  • Llano M, Kelly T, Vanegas M, et al. Blockade of human immunodeficiency virus type 1 expression by caveolin-1. J Virol. 2002;76(18):9152–9164. doi: 10.1128/JVI.76.18.9152-9164.2002
  • Sathish V, Abcejo AJ, Thompson MA, et al. Caveolin-1 regulation of store-operated Ca(2+) influx in human airway smooth muscle. Eur Respir J. 2012;40(2):470–478. doi: 10.1183/09031936.00090511
  • Gosens R, Stelmack GL, Dueck G, et al. Caveolae facilitate muscarinic receptor-mediated intracellular Ca2+ mobilization and contraction in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2007;293(6):L1406–18. doi: 10.1152/ajplung.00312.2007
  • Sathish V, Abcejo AJ, VanOosten SK, et al. Caveolin-1 in cytokine-induced enhancement of intracellular Ca(2+) in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2011;301(4):L607–14. doi: 10.1152/ajplung.00019.2011
  • Alvarez-Santos M, Ramos-Ramirez P, Gutierrez-Aguilar F, et al. Antigen-induced airway hyperresponsiveness and obstruction is related to caveolin-1 expression in airway smooth muscle in a guinea pig asthma model. Clin Transl Allergy. 2015;5(1):14. doi: 10.1186/s13601-015-0058-7
  • Chen CM, Wu MY, Chou HC, et al. Downregulation of caveolin-1 in a murine model of acute allergic airway disease. Pediatr Neonatol. 2011;52(1):5–10. doi: 10.1016/j.pedneo.2010.12.006
  • Bains SN, Tourkina E, Atkinson C, et al. Loss of caveolin-1 from bronchial epithelial cells and monocytes in human subjects with asthma. Allergy. 2012;67(12):1601–1604. doi: 10.1111/all.12021
  • Vogel ER, Britt RD Jr., Faksh A, et al. Moderate hyperoxia induces extracellular matrix remodeling by human fetal airway smooth muscle cells. Pediatr Res. 2017;81(2):376–383. doi: 10.1038/pr.2016.218
  • Maspero J, Adir Y, Al-Ahmad M, et al. Type 2 inflammation in asthma and other airway diseases. ERJ Open Res. 2022;8(3):00576–2021. doi: 10.1183/23120541.00576-2021
  • Scott G, Asrat S, Allinne J, et al. IL-4 and IL-13, not eosinophils, drive type 2 airway inflammation, remodeling and lung function decline. Cytokine. 2023;162:156091. doi: 10.1016/j.cyto.2022.156091
  • Fang P, Shi HY, Wu XM, et al. Targeted inhibition of GATA-6 attenuates airway inflammation and remodeling by regulating caveolin-1 through TLR2/MyD88/NF-kappaB in murine model of asthma. Mol Immunol. 2016;75:144–150. doi: 10.1016/j.molimm.2016.05.017
  • Xia Y, Cai PC, Yu F, et al. IL-4-induced caveolin-1-containing lipid rafts aggregation contributes to MUC5AC synthesis in bronchial epithelial cells. Respir Res. 2017;18(1):174. doi: 10.1186/s12931-017-0657-z
  • Gabehart KE, Royce SG, Maselli DJ, et al. Airway hyperresponsiveness is associated with airway remodeling but not inflammation in aging Cav1-/- mice. Respir Res. 2013;14(1):110. doi: 10.1186/1465-9921-14-110
  • Hackett TL, de Bruin HG, Shaheen F, et al. Caveolin-1 controls airway epithelial barrier function. Implications for asthma. Am J Respir Cell Mol Biol. 2013;49(4):662–671. doi: 10.1165/rcmb.2013-0124OC
  • Le Saux CJ, Teeters K, Miyasato SK, et al. Down-regulation of caveolin-1, an inhibitor of transforming growth factor-beta signaling, in acute allergen-induced airway remodeling. J Biol Chem. 2008;283(9):5760–5768. doi: 10.1074/jbc.M701572200
  • Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium. 2007;42(4–5):467–476. doi: 10.1016/j.ceca.2007.05.011
  • DiPolo R, Beauge L. Sodium/Calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol Rev. 2006;86(1):155–203. doi: 10.1152/physrev.00018.2005
  • Algara-Suarez P, Romero-Mendez C, Chrones T, et al. Functional coupling between the Na+/Ca2+ exchanger and nonselective cation channels during histamine stimulation in guinea pig tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L191–8. doi: 10.1152/ajplung.00485.2006
  • Li M, Shang YX. Inhaled corticosteroids inhibit substance P receptor expression in asthmatic rat airway smooth muscle cells. BMC Pulm Med. 2012;12(1):79. doi: 10.1186/1471-2466-12-79
  • Rahman M, Inman M, Kiss L, et al. Reverse-mode NCX current in mouse airway smooth muscle: Na(+) and voltage dependence, contributions to Ca(2+) influx and contraction, and altered expression in a model of allergen-induced hyperresponsiveness. Acta Physiol (Oxf). 2012;205(2):279–291. doi: 10.1111/j.1748-1716.2011.02401.x
  • Li M, Shang YX. Neurokinin-1 receptor antagonist decreases [Ca(2+)]i in airway smooth muscle cells by reducing the reverse-mode Na(+)/Ca(2+) exchanger current. Peptides. 2019;115:69–74. doi: 10.1016/j.peptides.2019.03.004
  • Sathish V, Delmotte PF, Thompson MA, et al. Sodium-calcium exchange in intracellular calcium handling of human airway smooth muscle. PLoS One. 2011;6(8):e23662. doi: 10.1371/journal.pone.0023662
  • Johnson MT, Benson JC, Pathak T, et al. The airway smooth muscle sodium/calcium exchanger NCLX is critical for airway remodeling and hyperresponsiveness in asthma. J Biol Chem. 2022;298(8):102259. doi: 10.1016/j.jbc.2022.102259
  • Romani P, Valcarcel-Jimenez L, Frezza C, et al. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. 2021;22(1):22–38. doi: 10.1038/s41580-020-00306-w
  • Cox CD, Bae C, Ziegler L, et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun. 2016;7(1):10366. doi: 10.1038/ncomms10366
  • Lewis AH, Grandl J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. Elife. 2015;4:4. doi: 10.7554/eLife.12088
  • Taberner FJ, Prato V, Schaefer I, et al. Structure-guided examination of the mechanogating mechanism of PIEZO2. Proc Natl Acad Sci U S A. 2019;116(28):14260–14269. doi: 10.1073/pnas.1905985116
  • Wu J, Lewis AH, Grandl J. Touch, tension, and transduction - the function and regulation of Piezo ion channels. Trends Biochem Sci. 2017;42(1):57–71. doi: 10.1016/j.tibs.2016.09.004
  • Fang Z, Yi F, Peng Y, et al. Inhibition of TRPA1 reduces airway inflammation and hyperresponsiveness in mice with allergic rhinitis. FASEB J. 2021;35(5):e21428. doi: 10.1096/fj.201902627R
  • Zhang EY, Bartman CM, Prakash YS, et al. Oxygen and mechanical stretch in the developing lung: risk factors for neonatal and pediatric lung disease. Front Med. 2023;10:1214108. doi: 10.3389/fmed.2023.1214108
  • Song S, Zhang H, Wang X, et al. The role of mechanosensitive Piezo1 channel in diseases. Prog Biophys Mol Biol. 2022;172:39–49. doi: 10.1016/j.pbiomolbio.2022.04.006
  • Chakraborty M, Chu K, Shrestha A, et al. Mechanical stiffness controls dendritic Cell metabolism and function. Cell Rep. 2021;34(2):108609. doi: 10.1016/j.celrep.2020.108609
  • Atcha H, Jairaman A, Holt JR, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat Commun. 2021;12(1):3256. doi: 10.1038/s41467-021-23482-5
  • Gaub BM, Muller DJ. Mechanical Stimulation of Piezo1 Receptors Depends on Extracellular Matrix Proteins and Directionality of Force. Nano Lett. 2017;17(3):2064–2072. doi: 10.1021/acs.nanolett.7b00177
  • Friedrich EE, Hong Z, Xiong S, et al. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc Natl Acad Sci U S A. 2019;116(26):12980–12985. doi: 10.1073/pnas.1902165116
  • Luo M, Ni K, Gu R, et al. Chemical activation of Piezo1 alters biomechanical behaviors toward relaxation of cultured airway smooth muscle cells. Biol Pharm Bull. 2023;46(1):1–11. doi: 10.1248/bpb.b22-00209
  • Diem K, Fauler M, Fois G, et al. Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J. 2020;34(9):12785–12804. doi: 10.1096/fj.202000613RRR
  • Kelley B, Zhang EY, Khalfaoui L, et al. Piezo channels in stretch effects on developing human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2023;325(5):L542–L551. doi: 10.1152/ajplung.00008.2023
  • Migulina N, Kelley B, Zhang EY, et al. Mechanosensitive channels in lung health and disease. Compr Physiol. 2023;13(4):5157–5178. doi: 10.1002/cphy.c230006
  • Chesler AT, Szczot M. Portraits of a pressure sensor. Elife. 2018;7. doi: 10.7554/eLife.34396
  • Nickolls AR, Lee MM, Espinoza DF, et al. Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells. Cell Rep. 2020;30(3):932–46 e7. doi: 10.1016/j.celrep.2019.12.062
  • Romero LO, Caires R, Nickolls AR, et al. A dietary fatty acid counteracts neuronal mechanical sensitization. Nat Commun. 2020;11(1):2997. doi: 10.1038/s41467-020-16816-2
  • Hambright PE, Rau K, Chappell J, et al. Determining the presence and expression of Piezo2 in human lung tissue across various pathologies. American Thoracic Society. 2020;201:A5538.
  • Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol. 2007;120(6):1233-44; quiz 45–6. doi: 10.1016/j.jaci.2007.10.025
  • Zhong T, Zhang W, Guo H, et al. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B. 2022;12(4):1761–1780. doi: 10.1016/j.apsb.2021.11.001
  • Nilius B, Szallasi A, Sibley DR. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev. 2014;66(3):676–814. doi: 10.1124/pr.113.008268
  • Staaf S, Franck MC, Marmigere F, et al. Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene Expr Patterns. 2010;10(1):65–74. doi: 10.1016/j.gep.2009.10.003
  • Seth M, Zhang ZS, Mao L, et al. TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res. 2009;105(10):1023–1030. doi: 10.1161/CIRCRESAHA.109.206581
  • Wang H, Cheng X, Tian J, et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther. 2020;209:107497. doi: 10.1016/j.pharmthera.2020.107497
  • Strubing C, Krapivinsky G, Krapivinsky L, et al. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron. 2001;29(3):645–655. doi: 10.1016/S0896-6273(01)00240-9
  • Chen J, Barritt GJ. Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca(2+)-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1. Biochem J. 2003;373(Pt 2):327–336. doi: 10.1042/bj20021904
  • Maroto R, Raso A, Wood TG, et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol. 2005;7(2):179–185. doi: 10.1038/ncb1218
  • Shen B, Wong CO, Lau OC, et al. Plasma membrane mechanical stress activates TRPC5 channels. PLoS One. 2015;10(4):e0122227. doi: 10.1371/journal.pone.0122227
  • Gomis A, Soriano S, Belmonte C, et al. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J Physiol. 2008;586(23):5633–5649. doi: 10.1113/jphysiol.2008.161257
  • Lembrechts R, Brouns I, Schnorbusch K, et al. Neuroepithelial bodies as mechanotransducers in the intrapulmonary airway epithelium: involvement of TRPC5. Am J Respir Cell Mol Biol. 2012;47(3):315–323. doi: 10.1165/rcmb.2012-0068OC
  • Welsh DG, Morielli AD, Nelson MT, et al. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res. 2002;90(3):248–250. doi: 10.1161/hh0302.105662
  • Xiao JH, Zheng YM, Liao B, et al. Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am J Respir Cell Mol Biol. 2010;43(1):17–25. doi: 10.1165/rcmb.2009-0091OC
  • Flores-Soto E, Reyes-Garcia J, Carbajal-Garcia A, et al. Sex steroids effects on guinea pig airway smooth muscle tone and intracellular Ca(2+) basal levels. Mol Cell Endocrinol. 2017;439:444–456. doi: 10.1016/j.mce.2016.10.004
  • Song T, Hao Q, Zheng YM, et al. Inositol 1,4,5-trisphosphate activates TRPC3 channels to cause extracellular Ca2+ influx in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2015;309(12):L1455–66. doi: 10.1152/ajplung.00148.2015
  • Reyes-Garcia J, Flores-Soto E, Carbajal-Garcia A, et al. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (review). Int J Mol Med. 2018;42(6):2998–3008. doi: 10.3892/ijmm.2018.3910
  • Himmel NJ, Cox DN. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc Biol Sci. 2020;287(1933):20201309. doi: 10.1098/rspb.2020.1309
  • Bonvini SJ, Birrell MA, Dubuis E, et al. Novel airway smooth muscle–mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur Respir J. 2020;56(1):1901458. doi: 10.1183/13993003.01458-2019
  • Cai X, Yang YC, Wang JF, et al. Transient receptor potential vanilloid 2 (TRPV2), a potential novel biomarker in childhood asthma. J Asthma. 2013;50(2):209–214. doi: 10.3109/02770903.2012.753454
  • Li J, Chen Y, Chen QY, et al. Role of transient receptor potential cation channel subfamily V member 1 (TRPV1) on ozone-exacerbated allergic asthma in mice. Environ Pollut. 2019;247:586–594. doi: 10.1016/j.envpol.2019.01.091
  • Samivel R, Kim DW, Son HR, et al. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis. Oncotarget. 2016;7(1):148–160. doi: 10.18632/oncotarget.6653
  • Li C, Zhang H, Wei L, et al. Role of TRPA1/TRPV1 in acute ozone exposure induced murine model of airway inflammation and bronchial hyperresponsiveness. J Thorac Dis. 2022;14(7):2698–2711. doi: 10.21037/jtd-22-315
  • Yang J, Yu HM, Zhou XD, et al. Study on TRPV1-mediated mechanism for the hypersecretion of mucus in respiratory inflammation. Mol Immunol. 2013;53(1–2):161–171. doi: 10.1016/j.molimm.2012.06.015
  • Millqvist E. TRPV1 and TRPM8 in treatment of chronic cough. Pharmaceuticals (Basel). 2016;9(3):45. doi: 10.3390/ph9030045
  • Choi JY, Lee HY, Hur J, et al. TRPV1 Blocking alleviates airway inflammation and remodeling in a chronic asthma murine model. Allergy Asthma Immunol Res. 2018;10(3):216–224. doi: 10.4168/aair.2018.10.3.216
  • Rousseau E, Cloutier M, Morin C, et al. Capsazepine, a vanilloid antagonist, abolishes tonic responses induced by 20-HETE on guinea pig airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2005;288(3):L460–70. doi: 10.1152/ajplung.00252.2004
  • Delescluse I, Mace H, Adcock JJ. Inhibition of airway hyper-responsiveness by TRPV1 antagonists (SB-705498 and PF-04065463) in the unanaesthetized, ovalbumin-sensitized guinea pig. Br J Pharmacol. 2012;166(6):1822–1832. doi: 10.1111/j.1476-5381.2012.01891.x
  • Jia Y, Lee LY. Role of TRPV receptors in respiratory diseases. Biochim Biophys Acta. 2007;1772(8):915–927. doi: 10.1016/j.bbadis.2007.01.013
  • Balestrini A, Joseph V, Dourado M, et al. A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J Exp Med. 2021;218(4). doi: 10.1084/jem.20201637
  • Caceres AI, Brackmann M, Elia MD, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A. 2009;106(22):9099–9104. doi: 10.1073/pnas.0900591106
  • Song J, Kang J, Lin B, et al. Mediating role of TRPV1 ion channels in the co-exposure to PM2.5 and formaldehyde of Balb/c mice asthma model. Sci Rep. 2017;7(1):11926. doi: 10.1038/s41598-017-11833-6
  • Chen CL, Li H, Xing XH, et al. Effect of TRPV1 gene mutation on bronchial asthma in children before and after treatment. Allergy Asthma Proc. 2015;36(2):e29–36. doi: 10.2500/aap.2015.36.3828
  • Xu J, Yang Y, Hou Z, et al. TRPV2-spike protein interaction mediates the entry of SARS-CoV-2 into macrophages in febrile conditions. Theranostics. 2021;11(15):7379–7390. doi: 10.7150/thno.58781
  • Zhang JJ, Li MW, Fan XS, et al. Effect of San’ao decoction on ovalbum induced asthmatic mice and expression of TRPV2 in lung. Zhongguo Zhong Yao Za Zhi. 2020;45(11):2619–2625. doi: 10.19540/j.cnki.cjcmm.20200323.401
  • Jia Y, Wang X, Varty L, et al. Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2004;287(2):L272–8. doi: 10.1152/ajplung.00393.2003
  • Zhao L, Sullivan MN, Chase M, et al. Calcineurin/Nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol. 2014;50(6):1064–1075. doi: 10.1165/rcmb.2013-0416OC
  • Yao L, Chen S, Tang H, et al. Transient receptor potential ion channels mediate adherens junctions dysfunction in a toluene diisocyanate-induced murine asthma model. Toxicol Sci. 2019;168(1):160–170. doi: 10.1093/toxsci/kfy285
  • Gombedza F, Kondeti V, Al-Azzam N, et al. Mechanosensitive transient receptor potential vanilloid 4 regulates dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation. FASEB J. 2017;31(4):1556–1570. doi: 10.1096/fj.201601045R
  • Balakrishna S, Song W, Achanta S, et al. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;307(2):L158–72. doi: 10.1152/ajplung.00065.2014
  • Zhang J, Wei Y, Bai S, et al. TRPV4 complexes with the Na(+)/Ca(2+) exchanger and IP(3) receptor 1 to regulate local intracellular calcium and tracheal tension in mice. Front Physiol. 2019;10:1471. doi: 10.3389/fphys.2019.01471
  • Aggarwal B, Mulgirigama A, Berend N. Exercise-induced bronchoconstriction: prevalence, pathophysiology, patient impact, diagnosis and management. NPJ Prim Care Respir Med. 2018;28(1):31. doi: 10.1038/s41533-018-0098-2
  • Al-Azzam N, Teegala LR, Pokhrel S, et al. Transient receptor potential vanilloid channel regulates fibroblast differentiation and airway remodeling by modulating redox signals through NADPH oxidase 4. Sci Rep. 2020;10(1):9827. doi: 10.1038/s41598-020-66617-2
  • Liu H, Liu Q, Hua L, et al. Inhibition of transient receptor potential melastatin 8 alleviates airway inflammation and remodeling in a murine model of asthma with cold air stimulus. Acta Biochim Biophys Sin (Shanghai). 2018;50(5):499–506. doi: 10.1093/abbs/gmy033
  • Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–824. doi: 10.1038/39807
  • Zhang L, An X, Wang Q, et al. Activation of cold-sensitive channels TRPM8 and TRPA1 inhibits the proliferative airway smooth muscle Cell phenotype. Lung. 2016;194(4):595–603. doi: 10.1007/s00408-016-9901-4
  • Wang Y, Shi J, Tong X. Cross-talk between mechanosensitive ion channels and calcium regulatory proteins in cardiovascular health and disease. Int J Mol Sci. 2021;22(16):8782. doi: 10.3390/ijms22168782
  • Zhang T, Chi S, Jiang F, et al. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat Commun. 2017;8(1):1797. doi: 10.1038/s41467-017-01712-z
  • Eisenhoffer GT, Loftus PD, Yoshigi M, et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature. 2012;484(7395):546–549. doi: 10.1038/nature10999
  • Santana Nunez D, Malik AB, Lee Q, et al. Piezo1 induces endothelial responses to shear stress via soluble adenylyl cyclase-IP(3)R2 circuit. iScience. 2023;26(5):106661. doi: 10.1016/j.isci.2023.106661
  • Cantero-Recasens G, Butnaru CM, Brouwers N, et al. Sodium channel TRPM4 and sodium/calcium exchangers (NCX) cooperate in the control of Ca(2+)-induced mucin secretion from goblet cells. J Biol Chem. 2019;294(3):816–826. doi: 10.1074/jbc.RA117.000848
  • Mitrovic S, Nogueira C, Cantero-Recasens G, et al. TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells. Elife. 2013;2:e00658. doi: 10.7554/eLife.00658
  • Bodnar D, Chung WY, Yang D, et al. STIM-TRP pathways and microdomain organization: Ca(2+) influx channels: the Orai-STIM1-TRPC complexes. Adv Exp Med Biol. 2017;993:139–157.
  • Pani B, Ong HL, Brazer SC, et al. Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci U S A. 2009;106(47):20087–20092. doi: 10.1073/pnas.0905002106
  • Park CY, Shcheglovitov A, Dolmetsch R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science. 2010;330(6000):101–105. doi: 10.1126/science.1191027
  • Murata T, Lin MI, Stan RV, et al. Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem. 2007;282(22):16631–16643. doi: 10.1074/jbc.M607948200
  • Pani B, Ong HL, Liu X, et al. Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of store-operated Ca2+ entry (SOCE). J Biol Chem. 2008;283(25):17333–17340. doi: 10.1074/jbc.M800107200
  • Zeng W, Yuan JP, Kim MS, et al. STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell. 2008;32(3):439–448. doi: 10.1016/j.molcel.2008.09.020
  • Yuan JP, Kiselyov K, Shin DM, et al. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell. 2003;114(6):777–789. doi: 10.1016/S0092-8674(03)00716-5
  • Huang GN, Zeng W, Kim JY, et al. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol. 2006;8(9):1003–1010. doi: 10.1038/ncb1454
  • Ong HL, Ambudkar IS. STIM-TRP pathways and microdomain organization: contribution of TRPC1 in store-operated Ca(2+) entry: impact on Ca(2+) signaling and Cell function. Adv Exp Med Biol. 2017;993:159–188.
  • Cheng KT, Liu X, Ong HL, et al. Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem. 2008;283(19):12935–12940. doi: 10.1074/jbc.C800008200
  • Kim MS, Zeng W, Yuan JP, et al. Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem. 2009;284(15):9733–9741. doi: 10.1074/jbc.M808097200
  • Taylor CW. Inositol trisphosphate receptors: Ca2±modulated intracellular Ca2+ channels. Biochim Biophys Acta. 1998;1436(1–2):19–33. doi: 10.1016/S0005-2760(98)00122-2
  • Sienaert I, De Smedt H, Parys JB, et al. Characterization of a cytosolic and a luminal Ca2+ binding site in the type I inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1996;271(43):27005–27012. doi: 10.1074/jbc.271.43.27005
  • Boulay G, Brown DM, Qin N, et al. Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A. 1999;96(26):14955–14960. doi: 10.1073/pnas.96.26.14955
  • Sammels E, Devogelaere B, Mekahli D, et al. Unraveling the role of polycystin-2/inositol 1,4,5-trisphosphate receptor interaction in Ca 2+ signaling. Commun Integr Biol. 2010;3(6):530–532. doi: 10.4161/cib.3.6.12751
  • Tovey SC, de Smet P, Lipp P, et al. Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci. 2001;114(Pt 22):3979–3989. doi: 10.1242/jcs.114.22.3979
  • Kasri NN, Bultynck G, Smyth J, et al. The N-terminal Ca2±independent calmodulin-binding site on the inositol 1,4,5-trisphosphate receptor is responsible for calmodulin inhibition, even though this inhibition requires Ca2+. Mol Pharmacol. 2004;66(2):276–284. doi: 10.1124/mol.66.2.276
  • Ong HL, Barritt GJ. Transient receptor potential and other ion channels as pharmaceutical targets in airway smooth muscle cells. Respirology. 2004;9(4):448–457. doi: 10.1111/j.1440-1843.2004.00651.x
  • Jha A, Sharma P, Anaparti V, et al. A role for transient receptor potential ankyrin 1 cation channel (TRPA1) in airway hyper-responsiveness? Can J Physiol Pharmacol. 2015;93(3):171–176. doi: 10.1139/cjpp-2014-0417
  • Lemonnier L, Trebak M, Lievremont JP, et al. Protection of TRPC7 cation channels from calcium inhibition by closely associated SERCA pumps. FASEB J. 2006;20(3):503–505. doi: 10.1096/fj.05-4714fje
  • Dietrich A, Chubanov V, Kalwa H, et al. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther. 2006;112(3):744–760. doi: 10.1016/j.pharmthera.2006.05.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.