111
Views
0
CrossRef citations to date
0
Altmetric
Review

Progress in genome-inspired treatment decisions for multifocal lung adenocarcinoma

, &
Pages 1009-1021 | Received 05 Jul 2023, Accepted 17 Nov 2023, Published online: 27 Nov 2023

References

  • Detterbeck FC, Franklin WA, Nicholson AG, et al. The IASLC lung cancer staging Project: background data and proposed criteria to distinguish separate primary lung cancers from metastatic foci in patients with two lung tumors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(5):651–665. doi: 10.1016/j.jtho.2016.01.025
  • Detterbeck FC, Marom EM, Arenberg DA, et al. The IASLC lung cancer staging Project: background data and proposals for the application of TNM staging rules to lung cancer presenting as multiple nodules with ground glass or lepidic features or a pneumonic type of involvement in the forthcoming eighth edition of the TNM classification. J Thorac Oncol. 2016;11(5):666–680. doi: 10.1016/j.jtho.2015.12.113
  • Detterbeck FC, Nicholson AG, Franklin WA, et al. The IASLC lung cancer staging Project: summary of proposals for revisions of the classification of lung cancers with multiple pulmonary sites of involvement in the forthcoming eighth edition of the TNM classification. J Thorac Oncol. 2016;11(5):639–650. doi: 10.1016/j.jtho.2016.01.024
  • Succony L, Rassl DM, Barker AP, et al. Adenocarcinoma spectrum lesions of the lung: detection, pathology and treatment strategies. Cancer Treat Rev. 2021;99:102237. doi: 10.1016/j.ctrv.2021.102237
  • Lee KH, Goo JM, Park SJ, et al. Correlation between the size of the solid component on thin-section CT and the invasive component on pathology in small lung adenocarcinomas manifesting as ground-glass nodules. J Thorac Oncol. 2014;9(1):74–82. doi: 10.1097/JTO.0000000000000019
  • Cohen JG, Reymond E, Lederlin M, et al. Differentiating pre- and minimally invasive from invasive adenocarcinoma using CT-features in persistent pulmonary part-solid nodules in caucasian patients. Eur J Radiol. 2015;84(4):738–744. doi: 10.1016/j.ejrad.2014.12.031
  • Mirka H, FERDA J, KRAKOROVA G, et al. The use of CT pattern in differentiating non-invasive, minimally invasive and invasive variants of lung adenocarcinoma. Anticancer Res. 2021;41(9):4479–4482. doi: 10.21873/anticanres.15257
  • Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244–285. doi: 10.1097/JTO.0b013e318206a221
  • Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: impact of Advances Since 2015. J Thorac Oncol. 2022;17(3):362–387. doi: 10.1016/j.jtho.2021.11.003
  • Mun M, Kohno T. Efficacy of thoracoscopic resection for multifocal bronchioloalveolar carcinoma showing pure ground-glass opacities of 20 mm or less in diameter. J Thorac Cardiovasc Surg. 2007;134(4):877–882. doi: 10.1016/j.jtcvs.2007.06.010
  • Nakata M, Sawada S, Yamashita M, et al. Surgical treatments for multiple primary adenocarcinoma of the lung. Ann Thorac Surg. 2004;78(4):1194–1199. doi: 10.1016/j.athoracsur.2004.03.102
  • Vazquez M, Carter D, Brambilla E, et al. Solitary and multiple resected adenocarcinomas after CT screening for lung cancer: histopathologic features and their prognostic implications. Lung Cancer. 2009;64(2):148–154. doi: 10.1016/j.lungcan.2008.08.009
  • Kim HY, Shim YM, Lee KS, et al. Persistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisons. Radiology. 2007;245(1):267–275. doi: 10.1148/radiol.2451061682
  • Kadota K, Nitadori J-I, Sima CS, et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage I lung adenocarcinomas. J Thorac Oncol. 2015;10(5):806–814. doi: 10.1097/JTO.0000000000000486
  • Shih AR, Mino-Kenudson M. Updates on spread through air spaces (STAS) in lung cancer. Histopathology. 2020;77(2):173–180. doi: 10.1111/his.14062
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463
  • Schloss JA, Gibbs RA, Makhijani VB, et al. Cultivating DNA sequencing technology after the Human genome Project. Annu Rev Genomics Hum Genet. 2020;21(1):117–138. doi: 10.1146/annurev-genom-111919-082433
  • Hu T, Chitnis N, Monos D, et al. Next-generation sequencing technologies: an overview. Hum Immunol. 2021;82(11):801–811. doi: 10.1016/j.humimm.2021.02.012
  • Yohe S, Thyagarajan B. Review of clinical Next-generation sequencing. Arch Pathol Lab Med. 2017;141(11):1544–1557. doi: 10.5858/arpa.2016-0501-RA
  • van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten Years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–426. doi: 10.1016/j.tig.2014.07.001
  • McCombie WR, McPherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med. 2019;9(11):9(11. doi: 10.1101/cshperspect.a036798
  • International Human Genome Sequencing, C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–945. doi: 10.1038/nature03001
  • Dehghan A. Genome-wide association studies. Methods Mol Biol 2018;1793:37–49.
  • Visscher PM, Brown M, McCarthy M, et al. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24. doi: 10.1016/j.ajhg.2011.11.029
  • Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091–1102. doi: 10.1016/S1474-4422(19)30320-5
  • Franke A, McGovern DPB, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–1125. doi: 10.1038/ng.717
  • Liang B, Ding H, Huang L, et al. GWAS in cancer: progress and challenges. Mol Genet Genomics. 2020;295(3):537–561. doi: 10.1007/s00438-020-01647-z
  • Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome Atlas (TCGA). Methods Mol Biol, 2016;1418:111–141.
  • Cheng PF, Dummer R, Levesque MP. Data mining the cancer genome Atlas in the era of precision cancer medicine. Swiss Med Wkly. 2015;145:w14183. doi: 10.4414/smw.2015.14183
  • Genomes Project C, Abecasis GR, Altshuler DM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393
  • Murray J. The “all of us research program. N Engl J Med. 2019;381(19):1884.
  • Fairley S, Lowy-Gallego E, Perry E, et al. The International genome sample resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 2020;48(D1):D941–D947. doi: 10.1093/nar/gkz836
  • Wetterstrand K The Cost Of Sequencing a Human Genome. [cited 2023 May 14]. Available from: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
  • Sboner A, Mu X, Greenbaum D, et al. The real cost of sequencing: higher than you think! Genome Biol. 2011;12(8):125. doi: 10.1186/gb-2011-12-8-125
  • Mardis ER. The journal,000 genome, the journal00,000 analysis? Genome Med. 2010;2(11):84. doi: 10.1186/gm205
  • Davey DD, Austin RM, Birdsong G, et al. The impact of the clinical laboratory improvement amendments of 1988 on cytopathology practice: a 25th anniversary review. J Am Soc Cytopathol. 2014;3(4):188–198. doi: 10.1016/j.jasc.2014.04.004
  • Rehm HL, Bale SJ, Bayrak-Toydemir P, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15(9):733–747. doi: 10.1038/gim.2013.92
  • Rehder C, Bean LJH, Bick D, et al. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of medical genetics and genomics (ACMG). Genet Med. 2021;23(8):1399–1415. doi: 10.1038/s41436-021-01139-4
  • Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of Next-generation sequencing–based oncology panels. J Mol Diagn. 2017;19(3):341–365. doi: 10.1016/j.jmoldx.2017.01.011
  • The Next Generation Sequencing Quality Initiative. [cited 2023 May 14]. Available from: https://www.cdc.gov/labquality/ngs-quality-initiative.html
  • Cho M, Ahn S, Hong M, et al. Tissue recommendations for precision cancer therapy using next generation sequencing: a comprehensive single cancer center’s experiences. Oncotarget. 2017;8(26):42478–42486. doi: 10.18632/oncotarget.17199
  • Gaffney EF, Riegman PH, Grizzle WE, et al. Factors that drive the increasing use of FFPE tissue in basic and translational cancer research. Biotechnic Histochemist. 2018;93(5):373–386. doi: 10.1080/10520295.2018.1446101
  • Jacobsen SB, Tfelt-Hansen J, Smerup MH, et al. Comparison of whole transcriptome sequencing of fresh, frozen, and formalin-fixed, paraffin-embedded cardiac tissue. PLoS One. 2023;18(3):e0283159. doi: 10.1371/journal.pone.0283159
  • Hedegaard J, Thorsen K, Lund MK, et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One. 2014;9(5):e98187. doi: 10.1371/journal.pone.0098187
  • McDonough SJ, Bhagwate A, Sun Z, et al. Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods. PLoS One. 2019;14(4):e0211400. doi: 10.1371/journal.pone.0211400
  • Zhao JJ, Chan HP, Soon YY, et al. A systematic review and meta-analysis of the adequacy of endobronchial ultrasound transbronchial needle aspiration for next-generation sequencing in patients with non-small cell lung cancer. Lung Cancer. 2022;166:17–26. doi: 10.1016/j.lungcan.2022.01.018
  • Diep R, MacDonald M, Cooper R, et al. Biopsy method and needle size on success of Next-generation sequencing in NSCLC: a brief report. JTO Clin Res Rep. 2023;4(4):100497. doi: 10.1016/j.jtocrr.2023.100497
  • Martin-Deleon R, Teixido C, Lucena CM, et al. EBUS-TBNA Cytological samples for Comprehensive molecular testing in non–small cell lung cancer. Cancers (Basel). 2021;13(9):2084. doi: 10.3390/cancers13092084
  • Zhang C, Kim RY, McGrath CM, et al. The performance of an extended Next generation sequencing panel using endobronchial ultrasound-guided fine needle aspiration samples in non-Squamous non-small cell lung cancer: a pragmatic study. Clin Lung Cancer. 2023;24(2):e105–e112. doi: 10.1016/j.cllc.2022.11.010
  • Lyons TG. Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol. 2019;20(11):82. doi: 10.1007/s11864-019-0682-x
  • Patel TH, Cecchini M. Targeted therapies in advanced gastric cancer. Curr Treat Options Oncol. 2020;21(9):70. doi: 10.1007/s11864-020-00774-4
  • Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325(7):669–685. doi: 10.1001/jama.2021.0106
  • Cagle PT, Chirieac LR. Advances in treatment of lung cancer with targeted therapy. Arch Pathol Lab Med. 2012;136(5):504–509. doi: 10.5858/arpa.2011-0618-RA
  • Qian Y, Gong Y, Fan Z, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2020;13(1):130. doi: 10.1186/s13045-020-00958-3
  • Benson AB, Venook AP, Al-Hawary MM, et al. Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022;20(10):1139–1167. doi: 10.6004/jnccn.2022.0051
  • Gradishar WJ, Moran MS, Abraham J, et al. Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022;20(6):691–722. doi: 10.6004/jnccn.2022.0030
  • Ettinger DS, Wood DE, Aisner DL, et al. NCCN guidelines® insights: non–small cell lung cancer, version 2.2023. J Natl Compr Canc Netw. 2023;21(4):340–350. doi: 10.6004/jnccn.2023.0020
  • Stobbe MD, Thun GA, Diéguez-Docampo A, et al. Recurrent somatic mutations reveal new insights into consequences of mutagenic processes in cancer. PLoS Comput Biol. 2019;15(11):e1007496. doi: 10.1371/journal.pcbi.1007496
  • Landau J, Tsaban L, Yaacov A, et al. Shared cancer dataset analysis identifies and predicts the quantitative effects of pan-cancer somatic driver variants. Cancer Res. 2023;83(1):74–88. doi: 10.1158/0008-5472.CAN-22-1038
  • Consortium ITP-CAOWG, Abascal F, Abeshouse A. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93. doi: 10.1038/s41586-020-1969-6
  • Meirson T, Bomze D, Schueler-Furman O, et al. Systemic structural analysis of alterations reveals a common structural basis of driver mutations in cancer. NAR Cancer. 2023;5(1):zcac040. doi: 10.1093/narcan/zcac040
  • Pilarski R. How have multigene panels changed the clinical practice of genetic counseling and testing. J Natl Compr Canc Netw. 2021;19(1):103–108. doi: 10.6004/jnccn.2020.7674
  • Sheikine Y, Kuo FC, Lindeman NI. Clinical and technical aspects of genomic diagnostics for precision oncology. J Clin Oncol. 2017;35(9):929–933. doi: 10.1200/JCO.2016.70.7539
  • Kopetz S, Mills Shaw KR, Lee JJ, et al. Use of a targeted exome Next-generation sequencing panel offers therapeutic opportunity and clinical benefit in a subset of patients with advanced cancers. JCO Precis Oncol. 2019;(3):1–14. doi: 10.1200/PO.18.00213
  • Vail E, Song J, Xu J, et al. Comparison of large, medium, and small solid tumor gene panels for detection of clinically actionable mutations in cancer. Targ Oncol. 2020;15(4):523–530. doi: 10.1007/s11523-020-00743-9
  • Miller EM, Patterson NE, Zechmeister JM, et al. Development and validation of a targeted next generation DNA sequencing panel outperforming whole exome sequencing for the identification of clinically relevant genetic variants. Oncotarget. 2017;8(60):102033–102045. doi: 10.18632/oncotarget.22116
  • Santos E, Martin-Zanca D, Reddy EP, et al. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science. 1984;223(4637):661–664. doi: 10.1126/science.6695174
  • Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. 1993;53(10 Suppl):2379–2385.
  • Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-Cell lung cancer to Gefitinib. N Engl J Med. 2004;350(21):2129–2139. doi: 10.1056/NEJMoa040938
  • Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–1500. doi: 10.1126/science.1099314
  • Shih JY, Gow CH, Yang PC. EGFR mutation conferring primary resistance to gefitinib in non-small-cell lung cancer. N Engl J Med. 2005;353(2):207–208. doi: 10.1056/NEJM200507143530217
  • Reita D, Pabst L, Pencreach E, et al. Molecular mechanism of EGFR-TKI resistance in EGFR-Mutated non-small cell lung cancer: application to biological diagnostic and monitoring. Cancers (Basel). 2021;13(19):4926. doi: 10.3390/cancers13194926
  • Kosaka T, Yatabe Y, Endoh H, et al. Analysis of epidermal growth factor receptor gene mutation in patients with non–small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res. 2006;12(19):5764–5769. doi: 10.1158/1078-0432.CCR-06-0714
  • Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N Engl J Med. 2017;376(7):629–640. doi: 10.1056/NEJMoa1612674
  • Herbst RS, Gandara DR, Hirsch FR, et al. Lung master protocol (lung-MAP)—A biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin Cancer Res. 2015;21(7):1514–1524. doi: 10.1158/1078-0432.CCR-13-3473
  • Steuer CE, Papadimitrakopoulou V, Herbst RS, et al. Innovative clinical trials: the LUNG-MAP study. Clin Pharmacol Ther. 2015;97(5):488–491. doi: 10.1002/cpt.88
  • Girard N, Ostrovnaya I, Lau C, et al. Genomic and mutational profiling to assess clonal relationships between multiple non–small cell lung cancers. Clin Cancer Res. 2009;15(16):5184–5190. doi: 10.1158/1078-0432.CCR-09-0594
  • Martini N, Melamed MR. Multiple primary lung cancers. J Thorac Cardiovasc Surg. 1975;70(4):606–612. doi: 10.1016/S0022-5223(19)40289-4
  • Goodwin D, Rathi V, Conron M, et al. Genomic and clinical significance of multiple primary lung cancers as determined by Next-generation sequencing. J Thorac Oncol. 2021;16(7):1166–1175. doi: 10.1016/j.jtho.2021.03.018
  • Antakli T, Schaefer RF, Rutherford JE, et al. Second primary lung cancer. Ann Thorac Surg. 1995;59(4):863–866. discussion 867. doi: 10.1016/0003-4975(95)00067-U
  • Shen KR, Meyers BF, Larner JM, et al. Special treatment issues in lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132(3):290S–305S. doi: 10.1378/chest.07-1382
  • Kozower BD, Larner JM, Detterbeck FC, et al. Special treatment issues in non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e369–e399. doi: 10.1378/chest.12-2362
  • Donfrancesco E, Yvorel V, Casteillo F, et al. Histopathological and molecular study for synchronous lung adenocarcinoma staging. Virchows Arch. 2020;476(6):835–842. doi: 10.1007/s00428-019-02736-0
  • Girard N, Deshpande C, Azzoli CG, et al. Use of epidermal growth factor receptor/Kirsten rat sarcoma 2 viral oncogene homolog mutation testing to define clonal relationships among multiple lung adenocarcinomas: comparison with clinical guidelines. Chest. 2010;137(1):46–52. doi: 10.1378/chest.09-0325
  • Sozzi G, Miozzo M, Pastorino U, et al. Genetic evidence for an independent origin of multiple preneoplastic and neoplastic lung lesions. Cancer Res. 1995;55(1):135–140.
  • van Rens MT, Eijken EJE, Elbers JRJ, et al. p53 mutation analysis for definite diagnosis of multiple primary lung carcinoma. Cancer. 2002;94(1):188–196. doi: 10.1002/cncr.10001
  • Hiroshima K, Toyozaki T, Kohno H, et al. Synchronous and metachronous lung carcinomas: molecular evidence for multicentricity. Pathol Int. 1998;48(11):869–876. doi: 10.1111/j.1440-1827.1998.tb03853.x
  • Matsuzoe D, Hideshima T, Ohshima K, et al. Discrimination of double primary lung cancer from intrapulmonary metastasis by p53 gene mutation. Br J Cancer. 1999;79(9–10):1549–1552. doi: 10.1038/sj.bjc.6690247
  • Mitsudomi T, Yatabe Y, Koshikawa T, et al. Mutations of the P53 tumor suppressor gene as clonal marker for multiple primary lung cancers. J Thorac Cardiovasc Surg. 1997;114(3):354–360. doi: 10.1016/S0022-5223(97)70180-6
  • Cai X, Sheng J, Tang C, et al. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing. PLoS One. 2014;9(4):e95228. doi: 10.1371/journal.pone.0095228
  • Navin NE, Hicks J. Tracing the tumor lineage. Mol Oncol. 2010;4(3):267–283. doi: 10.1016/j.molonc.2010.04.010
  • Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–566. doi: 10.1038/nature05945
  • Murphy SJ, Aubry M-C, Harris FR, et al. Identification of independent primary tumors and intrapulmonary metastases using DNA rearrangements in non–small-Cell lung cancer. J Clin Oncol. 2014;32(36):4050–4058. doi: 10.1200/JCO.2014.56.7644
  • Liu Y, Zhang J, Li L, et al. Genomic heterogeneity of multiple synchronous lung cancer. Nat Commun. 2016;7(1):13200. doi: 10.1038/ncomms13200
  • Murphy SJ, Harris FR, Kosari F, et al. Using genomics to differentiate multiple primaries from metastatic lung cancer. J Thorac Oncol. 2019;14(9):1567–1582. doi: 10.1016/j.jtho.2019.05.008
  • Patel SB, Kadi W, Walts AE, et al. Next-generation sequencing: a novel approach to distinguish multifocal primary lung adenocarcinomas from intrapulmonary metastases. J Mol Diagn. 2017;19(6):870–880. doi: 10.1016/j.jmoldx.2017.07.006
  • Saab J, Zia H, Mathew S, et al. Utility of genomic analysis in differentiating synchronous and metachronous lung adenocarcinomas from primary adenocarcinomas with intrapulmonary metastasis. Transl Oncol. 2017;10(3):442–449. doi: 10.1016/j.tranon.2017.02.009
  • Roepman P, ten Heuvel A, Scheidel KC, et al. Added value of 50-gene panel sequencing to distinguish multiple primary lung cancers from pulmonary metastases: a systematic investigation. J Mol Diagn. 2018;20(4):436–445. doi: 10.1016/j.jmoldx.2018.02.007
  • Takahashi Y, Shien K, Tomida S, et al. Comparative mutational evaluation of multiple lung cancers by multiplex oncogene mutation analysis. Cancer Sci. 2018;109(11):3634–3642. doi: 10.1111/cas.13797
  • Mansuet-Lupo A, Barritault M, Alifano M, et al. Proposal for a combined histomolecular algorithm to distinguish multiple primary adenocarcinomas from intrapulmonary metastasis in patients with multiple lung tumors. J Thorac Oncol. 2019;14(5):844–856. doi: 10.1016/j.jtho.2019.01.017
  • Duan J, Ge M, Peng J, et al. Application of large-scale targeted sequencing to distinguish multiple lung primary tumors from intrapulmonary metastases. Sci Rep. 2020;10(1):18840. doi: 10.1038/s41598-020-75935-4
  • Leventakos K, Peikert T, Midthun DE, et al. Management of multifocal lung cancer: results of a survey. J Thorac Oncol. 2017;12(9):1398–1402. doi: 10.1016/j.jtho.2017.05.013
  • Amin MB, American joint committee on cancer., and American cancer society., In: AJCC cancer staging manual. Eight edition/editor-in-chief, Mahul B. Amin MD, FCAP; editors Stephen B. Edge M, FACS and 16 others; Donna M, Gress RHIT, CTR - Technical editor; Laura R. eds Meyer, CAPM - Managing editor Vol. xvii. Chicago IL: American Joint Committee on Cancer: Springer; 2017. p. 1024.
  • Chang JC, Alex D, Bott M, et al. Comprehensive Next-generation sequencing unambiguously distinguishes separate primary lung carcinomas from intrapulmonary metastases: comparison with standard histopathologic approach. Clin Cancer Res. 2019;25(23):7113–7125. doi: 10.1158/1078-0432.CCR-19-1700
  • Arcila ME, Yang S-R, Momeni A, et al. Ultrarapid EGFR mutation screening followed by Comprehensive Next-generation sequencing: a feasible, informative approach for lung carcinoma cytology specimens with a high success rate. JTO Clin Res Rep. 2020;1(3):1(3. doi: 10.1016/j.jtocrr.2020.100077
  • Li R, Li X, Xue R, et al. Early metastasis detected in patients with multifocal pulmonary ground-glass opacities (GGOs). Thorax. 2018;73(3):290–292. doi: 10.1136/thoraxjnl-2017-210169
  • Detterbeck FC. Multifocal adenocarcinoma: perspectives, assumptions and elephants. J Thorac Dis. 2018;10(3):1193–1197. doi: 10.21037/jtd.2018.01.173
  • Garfield DH, Cadranel JL, Wislez M, et al. The bronchioloalveolar carcinoma and peripheral adenocarcinoma spectrum of diseases. J Thorac Oncol. 2006;1(4):344–359. doi: 10.1016/S1556-0864(15)31593-8
  • West HJ. Managing multifocal bronchioloalveolar carcinoma/lepidic predominant adenocarcinoma: changing rules for an evolving clinical entity. Clin Adv Hematol Oncol. 2014;12(9):593–600.
  • Kim BG, Um SW. A narrative review of the clinical approach to subsolid pulmonary nodules. Ann Transl Med. 2023;11(5):217. doi: 10.21037/atm-22-5246
  • Battafarano RJ, Meyers BF, Guthrie TJ, et al. Surgical resection of multifocal non-small cell lung cancer is associated with prolonged survival. Ann Thorac Surg. 2002;74(4):988–994. discussion 993-4. doi: 10.1016/S0003-4975(02)03878-X
  • Roberts PF, Straznicka M, Lara PN, et al. Resection of multifocal non–small cell lung cancer when the bronchioloalveolar subtype is involved. J Thorac Cardiovasc Surg. 2003;126(5):1597–1601. doi: 10.1016/S0022-5223(03)01280-7
  • Hattori A, Matsunaga T, Takamochi K, et al. Surgical management of multifocal ground-glass opacities of the lung: correlation of clinicopathologic and radiologic findings. Thorac Cardiovasc Surg. 2017;65(2):142–149. doi: 10.1055/s-0036-1572437
  • Gao RW, Berry MF, Kunder CA, et al. Survival and risk factors for progression after resection of the dominant tumor in multifocal, lepidic-type pulmonary adenocarcinoma. J Thorac Cardiovasc Surg. 2017;154(6):2092–2099 e2. doi: 10.1016/j.jtcvs.2017.07.034
  • Ji Y, Bai G, Qiu B, et al. The surgical management of early-stage lung adenocarcinoma: is wedge resection effective? J Thorac Dis. 2021;13(4):2137–2147. doi: 10.21037/jtd-20-3005
  • Waller DA. Surgical management of lung cancer with multiple lesions: implication of the new recommendations of the 8(th) edition of the TNM classification for lung cancer. J Thorac Dis. 2018;10(Suppl S22):S2686–S2691. doi: 10.21037/jtd.2018.04.159
  • Zuin A, Andriolo LG, Marulli G, et al. Is lobectomy really more effective than sublobar resection in the surgical treatment of second primary lung cancer? Eur J Cardiothorac Surg. 2013;44(2):e120–5. discussion e125. doi: 10.1093/ejcts/ezt219
  • Chen TF, Xie C-Y, Rao B-Y, et al. Surgical treatment to multiple primary lung cancer patients: a systematic review and meta-analysis. BMC Surg. 2019;19(1):185. doi: 10.1186/s12893-019-0643-0
  • Yang H, Sun Y, Yao F, et al. Surgical therapy for bilateral multiple primary lung cancer. Ann Thorac Surg. 2016;101(3):1145–1152. doi: 10.1016/j.athoracsur.2015.09.028
  • Shimada Y, Saji H, Otani K, et al. Survival of a surgical series of lung cancer patients with synchronous multiple ground-glass opacities, and the management of their residual lesions. Lung Cancer. 2015;88(2):174–180. doi: 10.1016/j.lungcan.2015.02.016
  • Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung cancer study group. Ann Thorac Surg. 1995;60(3):615–622. discussion 622-3. doi: 10.1016/0003-4975(95)00537-U
  • Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral stage IA non–small-Cell lung cancer. N Engl J Med. 2023;388(6):489–498. doi: 10.1056/NEJMoa2212083
  • Aokage K, Suzuki K, Saji H, et al. Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity (JCOG1211): a multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir Med. 2023;11(6):540–549. doi: 10.1016/S2213-2600(23)00041-3
  • Owen D, Olivier KR, Mayo CS, et al. Outcomes of stereotactic body radiotherapy (SBRT) treatment of multiple synchronous and recurrent lung nodules. Radiat Oncol. 2015;10(1):43. doi: 10.1186/s13014-015-0340-9
  • Nikitas J, DeWees T, Rehman S, et al. Stereotactic body radiotherapy for early-stage multiple primary lung cancers. Clin Lung Cancer. 2019;20(2):107–116. doi: 10.1016/j.cllc.2018.10.010
  • Sinha B, McGarry RC. Stereotactic body radiotherapy for bilateral primary lung cancers: the Indiana University experience. Int J Radiat Oncol Biol Phys. 2006;66(4):1120–1124. doi: 10.1016/j.ijrobp.2006.06.042
  • Creach KM, Bradley JD, Mahasittiwat P, et al. Stereotactic body radiation therapy in the treatment of multiple primary lung cancers. Radiother Oncol. 2012;104(1):19–22. doi: 10.1016/j.radonc.2011.12.005
  • Matthiesen C, Thompson JS, De La Fuente Herman T, et al. Use of stereotactic body radiation therapy for medically inoperable multiple primary lung cancer. J Med Imaging Radiat Oncol. 2012;56(5):561–566. doi: 10.1111/j.1754-9485.2012.02393.x
  • Chang JY, Liu Y-H, Zhu Z, et al. Stereotactic ablative radiotherapy: a potentially curable approach to early stage multiple primary lung cancer. Cancer. 2013;119(18):3402–3410. doi: 10.1002/cncr.28217
  • Griffioen GH, Lagerwaard FJ, Haasbeek CJA, et al. Treatment of multiple primary lung cancers using stereotactic radiotherapy, either with or without surgery. Radiother Oncol. 2013;107(3):403–408. doi: 10.1016/j.radonc.2013.04.026
  • Miyazaki T, Yamazaki T, Sato S, et al. Surgery or stereotactic body radiotherapy for metachronous primary lung cancer? A propensity score matching analysis. Gen Thorac Cardiovasc Surg. 2020;68(11):1305–1311. doi: 10.1007/s11748-020-01394-3
  • Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. JAMA. 2019;322(8):764–774. doi: 10.1001/jama.2019.11058
  • Wu C, Zhao C, Yang Y, et al. High discrepancy of driver mutations in patients with NSCLC and synchronous multiple lung ground-glass nodules. J Thorac Oncol. 2015;10(5):778–783. doi: 10.1097/JTO.0000000000000487
  • Liu M, He W-X, Song N, et al. Discrepancy of epidermal growth factor receptor mutation in lung adenocarcinoma presenting as multiple ground-glass opacities. Eur J Cardiothorac Surg. 2016;50(5):909–913. doi: 10.1093/ejcts/ezw113
  • Ye C, Wang J, Li W, et al. Novel strategy for synchronous multiple primary lung cancer displaying unique molecular profiles. Ann Thorac Surg. 2016;101(2):e45–7. doi: 10.1016/j.athoracsur.2015.06.042
  • Guardant360 CDx – P200010. 2020 [cited 2023 May 11]. Available from: https://www.fda.gov/medical-devices/recently-approved-devices/guardant360-cdx-p200010
  • Foundation One Liquid CDx – P190032. 2020 [cited 2023 May 11]. Available from: https://www.fda.gov/medical-devices/recently-approved-devices/foundationone-liquid-cdx-p190032
  • Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–892. doi: 10.1056/NEJMoa1113205
  • Yadav SS, Stockert JA, Hackert V, et al. Intratumor heterogeneity in prostate cancer. Urol Oncol. 2018;36(8):349–360. doi: 10.1016/j.urolonc.2018.05.008
  • Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol. 2014;8(6):1095–1111. doi: 10.1016/j.molonc.2014.06.005
  • Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–1558. doi: 10.1126/science.1235122
  • Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–1117. doi: 10.1038/nature09515
  • McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27(1):15–26. doi: 10.1016/j.ccell.2014.12.001
  • Ma P, Fu Y, Cai M-C, et al. Simultaneous evolutionary expansion and constraint of genomic heterogeneity in multifocal lung cancer. Nat Commun. 2017;8(1):823. doi: 10.1038/s41467-017-00963-0
  • Izumi M, Oyanagi J, Sawa K, et al. Mutational landscape of multiple primary lung cancers and its correlation with non-intrinsic risk factors. Sci Rep. 2021;11(1):5680. doi: 10.1038/s41598-021-83609-y
  • Wang Y, Wang G, Zheng H, et al. Distinct gene mutation profiles among multiple and single primary lung adenocarcinoma. Front Oncol. 2022;12:1014997. doi: 10.3389/fonc.2022.1014997
  • De Mattos-Arruda L, Weigelt B, Cortes J, et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann Oncol. 2014;25(9):1729–1735. doi: 10.1093/annonc/mdu239
  • Chabon JJ, Simmons AD, Lovejoy AF, et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. 2016;7(1):11815. doi: 10.1038/ncomms11815
  • Roosan MR, Mambetsariev I, Pharaon R, et al. Usefulness of circulating tumor DNA in identifying somatic mutations and tracking tumor evolution in patients with non-small cell lung cancer. Chest. 2021;160(3):1095–1107. doi: 10.1016/j.chest.2021.04.016
  • Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016;6(2):147–153. doi: 10.1158/2159-8290.CD-15-1283
  • Strickler JH, Loree JM, Ahronian LG, et al. Genomic landscape of cell-free DNA in patients with colorectal cancer. Cancer Discov. 2018;8(2):164–173. doi: 10.1158/2159-8290.CD-17-1009
  • Diaz Jr LA Jr., Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–540. doi: 10.1038/nature11219
  • Kuo YB, Chen J-S, Fan C-W, et al. Comparison of KRAS mutation analysis of primary tumors and matched circulating cell-free DNA in plasmas of patients with colorectal cancer. Clin Chim Acta. 2014;433:284–289. doi: 10.1016/j.cca.2014.03.024
  • Parikh AR, Leshchiner I, Elagina L, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med. 2019;25(9):1415–1421. doi: 10.1038/s41591-019-0561-9
  • Remon J, Lacroix L, Jovelet C, et al. Real-world utility of an amplicon-based Next-generation sequencing liquid biopsy for broad molecular profiling in patients with advanced non–small-Cell lung cancer. JCO Precis Oncol. 2019;3(3):1–14. doi: 10.1200/PO.18.00211
  • Leighl NB, Page RD, Raymond VM, et al. Clinical utility of Comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non–small cell lung cancer. Clin Cancer Res. 2019;25(15):4691–4700. doi: 10.1158/1078-0432.CCR-19-0624
  • Nigro MC, Marchese PV, Deiana C, et al. Clinical utility and application of liquid biopsy genotyping in lung cancer: a comprehensive review. Lung Cancer. 2023;14:11–25. doi: 10.2147/LCTT.S388047
  • Kowalik A, Kowalewska M, Gozdz S. Current approaches for avoiding the limitations of circulating tumor cells detection methods-implications for diagnosis and treatment of patients with solid tumors. Transl Res. 2017;185:58–84 e15. doi: 10.1016/j.trsl.2017.04.002
  • Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68. doi: 10.1126/scitranslmed.3003726
  • Misale S, Di Nicolantonio F, Sartore-Bianchi A, et al. Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov. 2014;4(11):1269–1280. doi: 10.1158/2159-8290.CD-14-0462
  • Lanman RB, Mortimer SA, Zill OA, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One. 2015;10(10):e0140712. doi: 10.1371/journal.pone.0140712
  • Rolfo C, Mack P, Scagliotti GV, et al. Liquid biopsy for advanced NSCLC: a consensus statement from the International association for the study of lung cancer. J Thorac Oncol. 2021;16(10):1647–1662. doi: 10.1016/j.jtho.2021.06.017
  • Rodriguez J, Frigola J, Vendrell E, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66(17):8462–9468. doi: 10.1158/0008-5472.CAN-06-0293
  • Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16(1):R50–9. doi: 10.1093/hmg/ddm018
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–2054. doi: 10.1056/NEJMra023075
  • Fullgrabe J, Gosal WS, Creed P, et al. Simultaneous sequencing of genetic and epigenetic bases in DNA. Nat Biotechnol. 2023;41(10):1457–1464. doi: 10.1038/s41587-022-01652-0
  • Zhang J, Yang C, Wu C, et al. DNA methyltransferases in cancer: biology, paradox, Aberrations, and targeted therapy. Cancers (Basel). 2020;12(8):12(8. doi: 10.3390/cancers12082123
  • Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Sig Transduct Target Ther. 2019;4(1):62. doi: 10.1038/s41392-019-0095-0
  • Yu X, Li M, Guo C, et al. Therapeutic targeting of cancer: epigenetic homeostasis. Front Oncol. 2021;11:747022. doi: 10.3389/fonc.2021.747022
  • Jin N, George TL, Otterson GA, et al. Advances in epigenetic therapeutics with focus on solid tumors. Clin Epigenetics. 2021;13(1):83. doi: 10.1186/s13148-021-01069-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.