280
Views
0
CrossRef citations to date
0
Altmetric
Review

Improving early diagnosis of bronchopulmonary dysplasia

, &
Pages 283-294 | Received 07 Feb 2024, Accepted 10 Jun 2024, Published online: 14 Jun 2024

References

  • Northway WH Jr., Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. N Engl J Med. 1967 Jan;276(7):357–368. Available from: http://dxdoiorg/101056/NEJM196702162760701
  • Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010 Sep;126(3):443–456. doi: 10.1542/peds.2009-2959
  • Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Paediatr. 2018;197(1):300–300. doi: 10.1016/j.jpeds.2018.01.043
  • Jensen EA, Wright CJ. Bronchopulmonary dysplasia: the ongoing search for one definition to rule them all. J Paediatr. 2018 Jun;197:8–10. doi: 10.1016/j.jpeds.2018.02.047
  • Laughon M, Allred EN, Bose C, et al. Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics. 2009 Apr;123(4):1124–1124. doi: 10.1542/peds.2008-0862
  • Nobile S, Marchionni P, Vento G, et al. New insights on early patterns of respiratory disease among extremely low gestational age newborns. Neonatology. 2017;112(1):53–59. doi: 10.1159/000456706
  • Jensen EA, Dysart K, Gantz MG, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. an evidence-based approach. Am J Respir Crit Care Med. [2019 Sep 15];200(6):751–759. doi: 10.1164/rccm.201812-2348OC
  • Klinger G, Sokolover N, Boyko V, et al. Perinatal risk factors for bronchopulmonary dysplasia in a national cohort of very-low-birthweight infants. Am J Obstet Gynecol. 2013 Feb;208(2):115.e1–9. doi: 10.1016/j.ajog.2012.11.026
  • Ballard AR, Mallett LH, Pruszynski JE, et al. Chorioamnionitis and subsequent bronchopulmonary dysplasia in very-low-birth weight infants: a 25-year cohort. J Perinatol. 2016 Dec;36(12):1045–1048. doi: 10.1038/jp.2016.138
  • Antonucci R, Contu P, Porcella A, et al. Intrauterine smoke exposure: a new risk factor for bronchopulmonary dysplasia? J Perinat Med. 2004;32(3):272–277. doi: 10.1515/JPM.2004.051
  • Bose C, Van Marter LJ, Laughon M, et al. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics. 2009 Sep;124(3):e450–e458. doi: 10.1542/peds.2008-3249
  • Thébaud B, Goss KN, Laughon M, et al. Bronchopulmonary dysplasia. Nat Rev Dis Primers. 2019 Nov;5(1):1–23. doi: 10.1038/s41572-019-0127-7
  • Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front Med (Lausanne). 2015 Dec;2(DEC):171424–171424. doi: 10.3389/fmed.2015.00090
  • Geetha O, Rajadurai VS, Anand AJ, et al. New BPD-prevalence and risk factors for bronchopulmonary dysplasia/mortality in extremely low gestational age infants ≤28 weeks. J Perinatol. 2021 Aug;41(8):1943–1950. doi: 10.1038/s41372-021-01095-6
  • Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics. 2009 May;123(5):1314–1319. doi: 10.1542/peds.2008-0656
  • Chock VY, Punn R, Oza A, et al. Predictors of bronchopulmonary dysplasia or death in premature infants with a patent ductus arteriosus. Pediatr Res. 2013 Dec;75(4):570–575. doi: 10.1038/pr.2013.253
  • Shaw GM, O’Brodovich HM. Progress in understanding the genetics of bronchopulmonary dysplasia. Semin Perinatol. 2013 Apr;37(2):85–93. doi: 10.1053/j.semperi.2013.01.004
  • Bhandari V, Bizzarro MJ, Shetty A, et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics. 2006 Jun;117(6):1901–1906. doi: 10.1542/peds.2005-1414
  • McEvoy CT, Jain L, Schmidt B, et al. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc. 2014 Apr;11(SUPPL. 3):S146–S153. doi: 10.1513/AnnalsATS.201312-424LD
  • Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia: a review of pathogenesis and pathophysiology. Respir Med. 2017 Nov;132:170–170. doi: 10.1016/j.rmed.2017.10.014
  • Coalson JJ. Pathology of new bronchopulmonary dysplasia. Semin Neonatol. 2003 Feb;8(1):73–81. doi: 10.1016/S1084-2756(02)00193-8
  • Greenberg RG, McDonald SA, Laughon MM, et al. Online clinical tool to estimate risk of bronchopulmonary dysplasia in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed. [2022 Jun 21];107(6):638–643. doi: 10.1136/archdischild-2021-323573
  • Torchin H, Ancel PY, Goffinet F, et al. Placental complications and bronchopulmonary dysplasia: EPIPAGE-2 cohort study. Pediatrics. 2016 Mar;137(3). doi: 10.1542/peds.2015-2163
  • Mestan KK, Check J, Minturn L, et al. Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension. Placenta. 2014;35(8):570–574. doi: 10.1016/j.placenta.2014.05.003
  • Chisholm KM, Heerema-Mckenney A, Tian L, et al. Correlation of preterm infant illness severity with placental histology. Placenta. 2016 Mar;39:61–69. doi: 10.1016/j.placenta.2016.01.012
  • Sahni M, Bhandari V. Patho-mechanisms of the origins of bronchopulmonary dysplasia. Mol Cell Pediatr. 2021 Dec;8(1):1–10. doi: 10.1186/s40348-021-00129-5
  • Mohamed WAW, Niyazy WH, Mahfouz AA. Angiopoietin-1 and endostatin levels in cord plasma predict the development of bronchopulmonary dysplasia in preterm infants. J Trop Pediatr. 2011 Oct;57(5):385–388. doi: 10.1093/tropej/fmq112
  • Janér J, Andersson S, Kajantie E, et al. Endostatin concentration in cord plasma predicts the development of bronchopulmonary dysplasia in very low birth weight infants. Pediatrics. 2009 Apr;123(4):1142–1146. doi: 10.1542/peds.2008-1339
  • Amelio GS, Provitera L, Raffaeli G, et al. Proinflammatory endothelial phenotype in very preterm infants: a pilot study. Biomedicines. 2022 May;10(5). doi: 10.3390/biomedicines10051185
  • Aghai ZH, Faqiri S, Saslow JG, et al. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone. J Perinatol. 2008 Feb;28(2):149–155. doi: 10.1038/sj.jp.7211886
  • El Shemi MS, Tawfik S, Khafagy SM, et al. Endothelin 1 as a predictor marker for bronchopulmonary dysplasia in preterm neonates with respiratory distress syndrome. J Neonatal Perinatal Med. 2017 Jan;10(1):79–83. doi: 10.3233/NPM-1653
  • Ambalavanan N, Novak ZE. Peptide growth factors in tracheal aspirates of mechanically ventilated preterm neonates. Pediatr Res. 2003 Feb;53(2):240–244. doi: 10.1203/01.PDR.0000047656.17766.39
  • Tsao PN, Wei SC, Su YN, et al. Placenta growth factor elevation in the cord blood of premature neonates predicts poor pulmonary outcome. Pediatrics. 2004 May;113(5):1348–1351. doi: 10.1542/peds.113.5.1348
  • Tsao PN, Su YN, Li H, et al. Overexpression of placenta growth factor contributes to the pathogenesis of pulmonary emphysema. Am J Respir Crit Care Med. 2004 Feb;169(4):505–511. doi: 10.1164/rccm.200306-774OC
  • Procianoy RS, Hentges CR, Silveira RC. Vascular endothelial growth factor/placental growth factor heterodimer levels in preterm infants with bronchopulmonary dysplasia. Am J Perinatol. 2016 Apr;33(5):480–485. doi: 10.1055/s-0035-1566294
  • Hasan J, Beharry KD, Valencia AM, et al. Soluble vascular endothelial growth factor receptor 1 in tracheal aspirate fluid of preterm neonates at birth may be predictive of bronchopulmonary dysplasia/chronic lung disease. Pediatrics. 2009 Jun;123(6):1541–1547. doi: 10.1542/peds.2008-1670
  • Hendricks-Muñoz KD, Xu J, Voynow JA. Tracheal aspirate VEGF and sphingolipid metabolites in the preterm infant with later development of bronchopulmonary dysplasia. Pediatr Pulmonol. 2018 Aug;53(8):1046–1052. doi: 10.1002/ppul.24022
  • Li J, Yu KH, Oehlert J, et al. Exome sequencing of neonatal blood spots and the identification of genes implicated in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015 Sep;192(5):589–596. doi: 10.1164/rccm.201501-0168OC
  • Poggi C, Giusti B, Gozzini E, et al. Genetic contributions to the development of complications in preterm newborns. PLoS One. 2015 Jul;10(7):e0131741. doi: 10.1371/journal.pone.0131741
  • Ambalavanan N, Michael Cotten C, Page GP, et al. Integrated genomic analyses in bronchopulmonary dysplasia. J Pediatr. 2015 Mar;166(3):531–537.e13. doi: 10.1016/j.jpeds.2014.09.052
  • Wang H, St Julien KR, Stevenson DK, et al. A genome-wide association study (GWAS) for bronchopulmonary dysplasia. Pediatrics. 2013 Aug;132(2):290–297. doi: 10.1542/peds.2013-0533
  • Torgerson DG, Ballard PL, Keller RL, et al. Ancestry and genetic associations with bronchopulmonary dysplasia in preterm infants. Am J Physiol Lung Cell Mol Physiol. [2018 Nov 1];315(5):L858–l869. doi: 10.1152/ajplung.00073.2018
  • Mahlman M, Karjalainen MK, Huusko JM, et al. Genome-wide association study of bronchopulmonary dysplasia: a potential role for variants near the CRP gene. Sci Rep. 2017 Aug 24;7(1):9271. doi: 10.1038/s41598-017-08977-w
  • Wang K, Huang X, Lu H, et al. A comparison of KL-6 And clara cell protein as markers for predicting bronchopulmonary dysplasia in preterm infants. Dis Markers. 2014 Aug 27;2014:736536. doi: 10.1155/2014/736536
  • Bustos ML, Mura M, Marcus P, et al. Bone marrow cells expressing clara cell secretory protein increase epithelial repair after ablation of pulmonary clara cells. Mol Ther. 2013 Jun;21(6):1251–1258. doi: 10.1038/mt.2013.53
  • Bustos ML, Mura M, Hwang D, et al. Depletion of bone marrow CCSP-expressing cells delays airway regeneration. Mol Ther. 2015 Mar;23(3):561–569. doi: 10.1038/mt.2014.223
  • Schrama AJ, Bernard A, Poorthuis BJ, et al. Cord blood Clara cell protein CC16 predicts the development of bronchopulmonary dysplasia. Eur J Pediatr. 2008 Nov;167(11):1305–1312. doi: 10.1007/s00431-008-0713-2
  • Hirani D, Alvira CM, Danopoulos S, et al. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia. Eur Respir J. 2022;59(2):2002248. doi: 10.1183/13993003.02248-2020
  • Tian XY, Zhang XD, Li QL, et al. Biological markers in cord blood for prediction of bronchopulmonary dysplasia in premature infants. Clin Exp Obstet Gynecol. 2014;41(3):313–318. doi: 10.12891/ceog16292014
  • Mohr A, Atif M, Balderas R, et al. The role of FOXP3(+) regulatory T cells in human autoimmune and inflammatory diseases. Clin Exp Immunol. 2019 Jul;197(1):24–35. doi: 10.1111/cei.13288
  • Pagel J, Twisselmann N, Rausch TK, et al. Increased regulatory T cells precede the development of bronchopulmonary dysplasia in preterm infants. Front Immunol. 2020;11:565257. doi: 10.3389/fimmu.2020.565257
  • Misra R, Shah S, Fowell D, et al. Preterm cord blood CD4+ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4+ T cells in bronchopulmonary dysplasia. Hum Immunol. 2015 May;76(5):329–338. doi: 10.1016/j.humimm.2015.03.007
  • Verder H, Heiring C, Ramanathan R, et al. Bronchopulmonary dysplasia predicted at birth by artificial intelligence. Acta Paediatr. 2021 Feb;110(2):503–509. doi: 10.1111/apa.15438
  • Fanos V, Pintus MC, Lussu M, et al. Urinary metabolomics of bronchopulmonary dysplasia (BPD): preliminary data at birth suggest it is a congenital disease. J Matern Fetal Neonatal Med. 2014 Oct;27(Suppl 2):39–45. doi: 10.3109/14767058.2014.955966
  • Mimmi MC, Ballico M, Nakib G, et al. Altered metabolic profile in congenital lung lesions revealed by 1 H nuclear magnetic resonance spectroscopy. ISRN Anal Chem. 2014;2014:1–8. doi: 10.1155/2014/391836
  • Shima Y, Nishimaki S, Nakajima M, et al. Urinary β-2-microglobulin as an alternative marker for fetal inflammatory response and development of bronchopulmonary dysplasia in premature infants. J Perinatology. 2011 May 01;31(5):330–334. doi: 10.1038/jp.2010.129
  • Ahmed S, Odumade OA, van Zalm P, et al. Urine proteomics for noninvasive monitoring of biomarkers in bronchopulmonary dysplasia. Neonatology. 2022;119(2):193–203. doi: 10.1159/000520680
  • Cui X, Fu J. Urinary biomarkers for the early prediction of bronchopulmonary dysplasia in preterm infants: a pilot study [original research]. Front Pediatr. 2022 Aug 11;10:10. doi: 10.3389/fped.2022.959513
  • Oji-Mmuo CN, Siddaiah R, Montes DT, et al. Tracheal aspirate transcriptomic and miRNA signatures of extreme premature birth with bronchopulmonary dysplasia. J Perinatology. 2021 Mar 01;41(3):551–561. doi: 10.1038/s41372-020-00868-9
  • Popova AP, Cui TX, Kaciroti N, et al. Tracheal aspirate levels of the matricellular protein SPARC predict development of bronchopulmonary dysplasia. PLoS One. 2015;10(12):e0144122. doi: 10.1371/journal.pone.0144122
  • Gentner S, Laube M, Uhlig U, et al. Inflammatory mediators in tracheal aspirates of preterm infants participating in a randomized trial of permissive hypercapnia [clinical trial]. Front Pediatr. 2017 Nov 21;5. doi: 10.3389/fped.2017.00246
  • Yen E, Weinberger BI, Laumbach RJ, et al. Exhaled breath condensate nitrite in premature infants with bronchopulmonary dysplasia. J Neonatal Perinatal Med. 2018;11(4):399–407. doi: 10.3233/NPM-17106
  • Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011 Jul;91(3):827–887. doi: 10.1152/physrev.00006.2010
  • Ameis D, Khoshgoo N, Iwasiow BM, et al. MicroRNAs In lung development and disease. Paediatr Respir Rev. 2017 Mar;22:38–43. doi: 10.1016/j.prrv.2016.12.002
  • Go H, Maeda H, Miyazaki K, et al. Extracellular vesicle miRNA-21 is a potential biomarker for predicting chronic lung disease in premature infants. Am J Physiol Lung Cell Mol Physiol. [2020 May 1];318(5):L845–l851. doi: 10.1152/ajplung.00166.2019
  • Siddaiah R, Oji-Mmuo CN, Montes DT, et al. MicroRNA signatures associated with bronchopulmonary dysplasia severity in tracheal aspirates of preterm infants. Biomedicines. [2021 Mar 5];9(3):257. doi: 10.3390/biomedicines9030257
  • Lal CV, Olave N, Travers C, et al. Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCI Insight. [2018 Mar 8];3(5). doi: 10.1172/jci.insight.93994
  • Ahmed S, Odumade OA, van Zalm P, et al. Proteomics-based mapping of bronchopulmonary dysplasia-associated changes in noninvasively accessible oral secretions. J Pediatr. [2023 Oct 13];270:113774. doi: 10.1016/j.jpeds.2023.113774
  • Kononikhin AS, Starodubtseva NL, Chagovets VV, et al. Exhaled breath condensate analysis from intubated newborns by nano-HPLC coupled to high resolution MS. Journal Of Chromatography B. 2017 Mar 15;1047:97–105. doi: 10.1016/j.jchromb.2016.12.036
  • Zhang ZQ, Huang XM, Lu H. Early biomarkers as predictors for bronchopulmonary dysplasia in preterm infants: a systematic review. Eur J Pediatr. 2014 Jan;173(1):15–23. doi: 10.1007/s00431-013-2148-7
  • May C, Patel S, Peacock J, et al. End-tidal carbon monoxide levels in prematurely born infants developing bronchopulmonary dysplasia. Pediatr Res. 2007 Apr;61(4):474–478. doi: 10.1203/pdr.0b013e3180332bfe
  • May C, Patel S, Kennedy C, et al. Prediction of bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed. 2011 Nov;96(6):F410–6. doi: 10.1136/adc.2010.189597
  • Krediet TG, Cirkel GA, Vreman HJ, et al. End-tidal carbon monoxide measurements in infant respiratory distress syndrome. Acta Paediatr. 2006 Sep;95(9):1075–1082. doi: 10.1080/08035250500537017
  • Toce SS, Farrell PM, Leavitt LA, et al. Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia. Am J Dis Child. 1984 Jun;138(6):581–585. doi: 10.1001/archpedi.1984.02140440065017
  • Swischuk LE, Shetty BP, John SD. The lungs in immature infants: how important is surfactant therapy in preventing chronic lung problems? Pediatr Radiol. 1996;26(8):508–511. doi: 10.1007/BF01372230
  • Arai H, Ito T, Ito M, et al. Impact of chest radiography-based definition of bronchopulmonary dysplasia. Pediatr Int. 2019;61(3):258–263. doi: 10.1111/ped.13786
  • Kim HR, Kim JY, Yun B, et al. Interstitial pneumonia pattern on day 7 chest radiograph predicts bronchopulmonary dysplasia in preterm infants. BMC Pediatr. [2017 May 15];17(1):125. doi: 10.1186/s12887-017-0881-1
  • Ochiai M, Hikino S, Yabuuchi H, et al. A new scoring system for computed tomography of the chest for assessing the clinical status of bronchopulmonary dysplasia. J Pediatr. 2008 Jan;152(1):90–5, 95.e1–3. doi: 10.1016/j.jpeds.2007.05.043
  • Li R, Zhang J. Diagnostic value of chest CT combined with x-ray for premature infants with bronchopulmonary dysplasia. Medicine (Baltimore). 2018 Mar;97(9):e9723. doi: 10.1097/MD.0000000000009723
  • Shin S-M, Kim WS, Cheon J-E, et al. Bronchopulmonary dysplasia: new high resolution computed tomography scoring system and correlation between the high resolution computed tomography score and clinical severity. Original Article | Pediatric Imaging Korean J Radiol. 14(2):350–360. doi: 10.3348/kjr.2013.14.2.350
  • van Mastrigt E, Kakar E, Ciet P, et al. Structural and functional ventilatory impairment in infants with severe bronchopulmonary dysplasia. Pediatr Pulmonol. 2017;52(8):1029–1037. doi: 10.1002/ppul.23696
  • May LA, Jadhav SP, Guillerman RP, et al. A novel approach using volumetric dynamic airway computed tomography to determine positive end-expiratory pressure (PEEP) settings to maintain airway patency in ventilated infants with bronchopulmonary dysplasia. Pediatr Radiol. 2019 Sep 01;49(10):1276–1284. doi: 10.1007/s00247-019-04465-7
  • Martini S, Corsini I, Corvaglia L, et al. A scoping review of echocardiographic and lung ultrasound biomarkers of bronchopulmonary dysplasia in preterm infants [Review]. Front Pediatr. 2023 Feb 10;11:11. doi: 10.3389/fped.2023.1067323
  • Raimondi F, Yousef N, Migliaro F, et al. Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr Res. 2021 Sep 01;90(3):524–531. doi: 10.1038/s41390-018-0114-9
  • Loi B, Vigo G, Baraldi E, et al. Lung ultrasound to monitor extremely preterm infants and predict bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2020 Jun 01;203(11):1398–1409. doi: 10.1164/rccm.202008-3131OC
  • Raimondi F, Migliaro F, Corsini I, et al. Lung ultrasound score progress in neonatal respiratory distress syndrome. Pediatrics. 2021;147(4). doi: 10.1542/peds.2020-030528
  • Pezza L, Alonso-Ojembarrena A, Elsayed Y, et al. Meta-analysis of lung ultrasound scores for early prediction of bronchopulmonary dysplasia. Ann Am Thoracic Soc. 2022;19(4):659–667. doi: 10.1513/AnnalsATS.202107-822OC
  • Higano NS, Ruoss JL, Woods JC. Modern pulmonary imaging of bronchopulmonary dysplasia. J Perinatol. 2021 Apr;41(4):707–717. doi: 10.1038/s41372-021-00929-7
  • Higano NS, Spielberg DR, Fleck RJ, et al. Neonatal pulmonary magnetic resonance imaging of bronchopulmonary dysplasia predicts short-term clinical outcomes. Am J Respir Crit Care Med. 2018;198(10):1302–1311. doi: 10.1164/rccm.201711-2287OC
  • Mourani PM, Sontag MK, Younoszai A, et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;191(1):87–95. doi: 10.1164/rccm.201409-1594OC
  • Levy PT, Dioneda B, Holland MR, et al. Right ventricular function in preterm and term neonates: reference values for right ventricle areas and fractional area of change. J Am Soc Echocardiography. 2015 May 01;28(5):559–569. doi: 10.1016/j.echo.2015.01.024
  • Sehgal A, Malikiwi A, Paul E, et al. Right ventricular function in infants with bronchopulmonary dysplasia: association with respiratory sequelae. Neonatology. 2016;109(4):289–296. doi: 10.1159/000442967
  • Ehrmann DE, Mourani PM, Abman SH, et al. Echocardiographic measurements of right ventricular mechanics in infants with bronchopulmonary dysplasia at 36 weeks postmenstrual age. J Pediatr. 2018 Dec 01;203:210–217.e1. doi: 10.1016/j.jpeds.2018.08.005
  • Czernik C, Rhode S, Metze B, et al. Persistently elevated right ventricular index of myocardial performance in preterm infants with incipient bronchopulmonary dysplasia. PLOS ONE. 2012;7(6):e38352. doi: 10.1371/journal.pone.0038352
  • Seo YH, Choi HJ. Clinical utility of echocardiography for early and late pulmonary hypertension in preterm infants: relation with bronchopulmonary dysplasia. jcu. 2017 12;25(4):124–130. doi: 10.4250/jcu.2017.25.4.124
  • Bokiniec R, Własienko P, Borszewska-Kornacka M, et al. Echocardiographic evaluation of right ventricular function in preterm infants with bronchopulmonary dysplasia. Echocardiography. 2017;34(4):577–586. doi: 10.1111/echo.13489
  • Neumann RP, Schulzke SM, Pohl C, et al. Right ventricular function and vasoactive peptides for early prediction of bronchopulmonary dysplasia. PLOS ONE. 2021;16(9):e0257571. doi: 10.1371/journal.pone.0257571
  • Dasgupta S, Richardson JC, Aly AM, et al. Role of functional echocardiographic parameters in the diagnosis of bronchopulmonary dysplasia-associated pulmonary hypertension. J Perinatology. 2022 Jan 01;42(1):19–30. doi: 10.1038/s41372-021-01009-6
  • Sharma A, Xin Y, Chen X, et al. Early prediction of moderate to severe bronchopulmonary dysplasia in extremely premature infants. Pediatr Neonatol. 2020 Jun;61(3):290–299. doi: 10.1016/j.pedneo.2019.12.001
  • Jassem-Bobowicz JM, Klasa-Mazurkiewicz D, Żawrocki A, et al. Prediction model for bronchopulmonary dysplasia in preterm newborns. Children. 2021;8(10):886. doi: 10.3390/children8100886
  • Dassios T, Williams EE, Harris C, et al. Using cluster analysis to describe phenotypical heterogeneity in extremely preterm infants: a retrospective whole-population study. BMJ Open. [2022 Feb 28];12(2):e056567. doi: 10.1136/bmjopen-2021-056567
  • Laughon MM, Langer JC, Bose CL, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. [2011 Jun 15];183(12):1715–1722. doi: 10.1164/rccm.201101-0055OC
  • Villamor E, van Westering-Kroon E, Gonzalez-Luis GE, et al. Patent ductus arteriosus and bronchopulmonary dysplasia–associated pulmonary hypertension: a bayesian meta-analysis. JAMA Netw Open. 2023;6(11):e2345299–e2345299. doi: 10.1001/jamanetworkopen.2023.45299
  • Gupta S, Subhedar NV, Bell JL, et al. Trial of selective early treatment of patent ductus arteriosus with ibuprofen. N Engl J Med. [2024 Jan 25];390(4):314–325. doi: 10.1056/NEJMoa2305582
  • El Faleh I, Faouzi M, Adams M, et al. Bronchopulmonary dysplasia: a predictive scoring system for very low birth weight infants. A diagnostic accuracy study with prospective data collection. Eur J Pediatr. 2021 Aug;180(8):2453–2461. doi: 10.1007/s00431-021-04045-8
  • Zhang J, Luo C, Lei M, et al. Development and validation of a nomogram for predicting bronchopulmonary dysplasia in very-low-birth-weight infants. Front Pediatr. 2021;9:648828. doi: 10.3389/fped.2021.648828
  • Gursoy T, Hayran M, Derin H, et al. A clinical scoring system to predict the development of bronchopulmonary dysplasia. Am J Perinatol. 2015 Jun;32(7):659–666. doi: 10.1055/s-0034-1393935
  • Dai D, Chen H, Dong X, et al. Bronchopulmonary dysplasia predicted by developing a machine learning model of genetic and clinical information [original research]. Front Genet. 2021 Jul 02;12:12. doi: 10.3389/fgene.2021.689071
  • Jassem-Bobowicz JM, Klasa-Mazurkiewicz D, Żawrocki A, et al. Prediction model for bronchopulmonary dysplasia in preterm newborns. Children (Basel). [2021 Oct 4];8(10):886. doi: 10.3390/children8100886
  • Gao Y, Liu D, Guo Y, et al. Risk prediction of bronchopulmonary dysplasia in preterm infants by the nomogram model. Front Pediatr. 2023;11:1117142. doi: 10.3389/fped.2023.1117142
  • Ou W, Lei K, Wang H, et al. Development of a blood proteins-based model for bronchopulmonary dysplasia prediction in premature infants. BMC Pediatr. [2023 Jun 17];23(1):304. doi: 10.1186/s12887-023-04065-3
  • Kwok T, Batey N, Luu KL, et al. Bronchopulmonary dysplasia prediction models: a systematic review and meta-analysis with validation. Pediatr Res. 2023 Jul 01;94(1):43–54. doi: 10.1038/s41390-022-02451-8
  • Romijn M, Dhiman P, Finken MJJ, et al. Prediction models for bronchopulmonary dysplasia in preterm infants: a systematic review and meta-analysis. J Pediatr. 2023 Jul;258:113370. doi: 10.1016/j.jpeds.2023.01.024
  • Doyle LW, Cheong JL, Hay S, et al. Late (≥ 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. [2021 Nov 11];2021(11):CD001145. doi: 10.1002/14651858.CD001145.pub5
  • Ballard HO, Shook LA, Bernard P, et al. Use of azithromycin for the prevention of bronchopulmonary dysplasia in preterm infants: a randomized, double-blind, placebo controlled trial. Pediatr Pulmonol. 2011 Feb;46(2):111–118. doi: 10.1002/ppul.21352
  • Razak A, Alshehri N. Azithromycin for preventing bronchopulmonary dysplasia in preterm infants: a systematic review and meta-analysis. Pediatr Pulmonol. 2021 May;56(5):957–966. doi: 10.1002/ppul.25230
  • Ohlsson A, Walia R, Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst Rev. 2020 2;2020(2). doi: 10.1002/14651858.CD003481.pub8
  • Clyman RI, Hills NK, Cambonie G, et al. Patent ductus arteriosus, tracheal ventilation, and the risk of bronchopulmonary dysplasia. Pediatr Res. 2022 Feb 01;91(3):652–658. doi: 10.1038/s41390-021-01475-w
  • Ahn SY, Chang YS, Lee MH, et al. Stem cells for bronchopulmonary dysplasia in preterm infants: a randomized controlled phase II trial. Stem Cells Transl Med. 2021 Aug;10(8):1129–1137. doi: 10.1002/sctm.20-0330
  • Darlow BA, Graham P, Rojas‐Reyes MX. Vitamin a supplementation to prevent mortality and short‐and long‐term morbidity in very low birth weight infants. Cochrane Database Syst Rev. 2016;2016(8). doi: 10.1002/14651858.CD000501.pub4
  • Schmidt B, Roberts RS, Davis P, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357(19):1893–1902. doi: 10.1056/NEJMoa073679
  • Harris C, Greenough A. The prevention and management strategies for neonatal chronic lung disease. Expert Rev Respir Med. 2023 Feb;17(2):143–154. doi: 10.1080/17476348.2023.2183842
  • Zivanovic S, Peacock J, Alcazar-Paris M, et al. Late outcomes of a randomized trial of high-frequency oscillation in neonates. N Engl J Med. [2014 Mar 20];370(12):1121–1130. doi: 10.1056/NEJMoa1309220