149
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Second-order extensions to nearly orthogonal-and-balanced (NOAB) mixed-factor experimental designs

, , ORCID Icon, &
Pages 226-237 | Received 12 Feb 2018, Accepted 26 Sep 2018, Published online: 31 Oct 2018

References

  • Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Response surface design evaluation and comparison. Journal of Statistical Planning and Inference, 139(2), 629–641.
  • Ang, J. K. (2006) Extending orthogonal and nearly orthogonal Latin hypercube designs for computer simulation and experiments. Master’s Thesis. Naval Postgraduate School, Monterey, California.
  • Bursztyn, D., & Steinberg, D. M. (2006). Comparison of designs for computer experiments. Journal of Statistical Planning and Inference, 136(3), 1103–1119.
  • Cioppa, T. M., & Lucas, T. W. (2007). Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics, 49(1), 45–55.
  • Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.
  • Florian, A. (1992). An efficient sampling scheme: Updated Latin hypercube sampling. Probabilistic Engineering Mechanics, 7(2), 123–130.
  • Goos, P. (2009). Discussion of “Response surface design evaluation and comparison”. Journal of Statistical Planning and Inference, 139(2), 657–659.
  • Hedayat, A. S., Sloane, N. J. A., & Stufken, J. (2012). Orthogonal arrays: Theory and applications. New York, NY: Springer Science & Business Media.
  • Hernandez, A. S., Lucas, T. W., & Carlyle, M. (2012). Constructing nearly orthogonal Latin hypercubes for any nonsaturated run-variable combination. ACM Transactions on Modeling and Computer Simulation, 22, 4.
  • Hickernell, F. J. (1998). A generalized discrepancy and quadrature error bound. Mathematics of Computation, 67(221), 299–322.
  • Iman, R. L., & Conover, W. J. (1982). A distribution-free approach to rank correlation among input variables. Communications in Statistics - Simulation and Computation, 11(3), 311–334.
  • Jin, R., Chen, W., & Sudjianto, A. (2002) On sequential sampling for global metamodeling in engineering design. In: Proceedings of DETC. Montreal, Canada, pp.539–548. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1579950.
  • Johnson, R. T., Montgomery, D. C., & Jones, B. (2011). An empirical study of the prediction performance of space-filling designs. International Journal of Experimental Design and Process Optimisation, 2(1), 1–18.
  • Jones, B., Silvestrini, R. T., Montgomery, D. C., & Steinberg, D. M. (2015). Bridge designs for modeling systems with low noise. Technometrics, 57(2), 155–163.
  • Kennedy, K., Silvestrini, R. T., Montgomery, D. C., & Jones, B. (2015). Prediction variance properties of bridge designs. International Journal of Experimental Design and Process Optimisation, 4(3–4), 234–255.
  • Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., & Cioppa, T. M. (2005). State-of-the-art review: A user’s guide to the brave new world of designing simulation experiments. INFORMS Journal on Computing, 17(3), 263–289.
  • Little, Z. C., Weir, J. D., Hill, R. R., Stone, B. B., and Freels, J. K. (2018). A recommendation system for first-order NOAB designs with multiple performance measures. In: Proceedings of the Western Decision Sciences Institute Annual Meeting. Kauai, Hawaii
  • Little, Z. C. (2018). Experimental Designs, Meta-modeling, and Meta-learning for Mixed-factor Systems with Large Decision Spaces. Doctoral Dissertation. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
  • Lu, L., Anderson-Cook, C. M., & Robinson, T. J. (2011). Optimization of designed experiments based on multiple criteria utilizing a Pareto frontier. Technometrics, 53(4), 353–365.
  • MacCalman, A. D. (2013) Flexible space-filling designs for complex system simulations. Doctoral Dissertation. Naval Postgraduate School, Monterey, California.
  • MacCalman, A. D., Vieira, H., & Lucas, T. (2017). Second-order nearly orthogonal Latin hypercubes for exploring stochastic simulations. Journal of Simulation, 11(2), 137–150.
  • Mason, A. J. (2012) OpenSolver – an open source add-in to solve linear and integer progammes in Excel. In: D. Klatte, H.-J. Lüthi, & K. Schmedders eds. Operations Research Proceedings 2011. Zurich, Switzerland: Springer Berlin Heidelberg, pp.401–406.
  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.
  • Montgomery, D. C. (2013). Design and analysis of experiments. Hoboken, New Jersey: John Wiley & Sons.
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: Process and product optimization using designed experiments. Hoboken, New Jersey: John Wiley & Sons.
  • Nguyen, N. K., & Liu, M. Q. (2008). An algorithmic approach to constructing mixed-level orthogonal and near-orthogonal arrays. Computational Statistics and Data Analysis, 52(12), 5269–5276.
  • OpenSolver (2017) OpenSolver for excel [Internet]. Retrieved from https://opensolver.org/, 26 January 2018.
  • Owen, A. B. (1994). Controlling correlations in Latin hypercube samples. Journal of the American Statistical Association, 89(428), 1517–1522.
  • Parker, P. A. (2009). Discussion–“Response surface design evaluation and comparison” by Christine M. Anderson-Cook, Connie M. Borror, Douglas C. Montgomery. Journal of Statistical Planning and Inference, 139(2), 645–646.
  • Piepel, G. F. (2009). Discussion of “Response surface design evaluation and comparison” by C.M. Anderson-Cook, C.M. Borror, and D.C. Montgomery. Journal of Statistical Planning and Inference, 139(2), 653–656.
  • Pronzato, L., & Müller, W. G. (2012). Design of computer experiments: Space filling and beyond. Statistics and Computing, 22(3), 681–701.
  • Rao, C. R. (1946). Hypercubes of strength “d” leading to confounded designs in factorial experiments. Bulletin of the Calcutta Mathematical Society, 38(3), 67–78.
  • Rao, C. R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays. Supplement to the Journal of the Royal Statistical Society, 9(1), 128–139.
  • Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.
  • Rousseeuw, P. J., & Molenberghs, G. (1994). The shape of correlation matrices. The American Statistician, 48(4), 276–279.
  • Sanchez, S. M., Sanchez, P. J., & Wan, H. (2014) Simulation experiments: Better insights by design. In: Proceedings of the 2014 Summer Simulation Conference. The Society for Modeling & Simulation International: San Diego, California.
  • Shamsuzzaman, M., Satish, M. G., & Pintér, J. D. (2015). Distance correlation-based nearly orthogonal space-filling experimental designs. International Journal of Experimental Design and Process Optimisation, 4(3/4), 216–233.
  • Smith-Miles, K. A. (2008). Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys, 41(1), 1–25.
  • Steinberg, D. M., & Lin, D. K. J. (2006). A construction method for orthogonal Latin hypercube designs. Biometrika, 93(2), 279–288.
  • Vieira, H., Jr., Sanchez, S. M., Kienitz, K. H., & Belderrain, M. C. N. (2013). Efficient, nearly orthogonal-and-balanced, mixed designs: An effective way to conduct trade-off analyses via simulation. Journal of Simulation, 7(4), 264–275.
  • Wang, J. C., & Wu, C. F. J. (1992). Nearly orthogonal arrays with mixed levels and small runs. Technometrics, 34(4), 409–422.
  • Ye, K. Q. (1998). Orthogonal column Latin hypercubes and their application in computer experiments. Journal of the American Statistical Association, 93(444), 1430–1439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.