315
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation modelling techniques for managing epidemic outbreak: A review, classification schemes, and meta-analysis

&
Pages 709-728 | Received 13 May 2021, Accepted 06 Apr 2022, Published online: 01 May 2022

References

  • Aaby, K., Abbey, R. L., Herrmann, J. W., Treadwell, M., Jordan, C. S., & Wood, K. (2006). Embracing computer modeling to address pandemic influenza in the 21st century. Journal of Public Health Management and Practice, 12(4), 365–372. https://doi.org/10.1097/00124784-200607000-00010
  • Aguiar, M., Ortuondo, E. M., Bidaurrazaga, V. D. J., Mar, J., & Stollenwerk, N. (2020). Modelling COVID 19 in the basque country from introduction to control measure response. Scientific Reports, 10(1):17306 . https://doi.org/10.1038/s41598-020-74386-1
  • Allen, M., Bhanji, A., Willemsen, J., Dudfield, S., Logan, S., & Monks, T. (2020). A simulation modelling toolkit for organizing outpatient dialysis services during the COVID- 19 pandemic. PLOS ONE, 15(8). https://doi.org/10.1371/journal.pone.0237628
  • Araz, O. M., Fowler, J. W., Lant, T. W., & Jehn, M. (2009). A pandemic influenza simulation model for preparedness planning. Proceedings of the winter simulation conference, 1986–1995. https://doi.org/10.1109/WSC.2009.5429732
  • Araz, O. M., Jehn, M., Lant, T., & Fowler, J. W. (2012). A new method of exercising pandemic preparedness through an interactive simulation and visualization. Journal of Medical Systems, 36(3), 1475–1483. https://doi.org/10.1007/s10916-010-9608-7
  • Araz, O. M., Lant, T., Fowler, J. W., & Jehn, M. (2011). A simulation model for policy decision analysis: A case of pandemic influenza on a university campus. Journal of Simulation, 5(2), 89–100. https://doi.org/10.1057/jos.2010.6
  • Araz, O. M., Lant, T., Fowler, J. W., & Jehn, M. (2013). Simulation modeling for pandemic decision making: A case study with bi-criteria analysis on school closures. Decision Support Systems, 55(2), 564–575. https://doi.org/10.1016/j.dss.2012.10.013
  • Arino, J., & Portet, S. (2020). A simple model for COVID-19. Infectious Disease Modelling, 5, 309–315. https://doi.org/10.1016/j.idm.2020.04.002
  • Broeck, W. V. D., Gioannini, C., Gonçalves, B., Quaggiotto, M., Colizza, V., & Corrado, V. A. (2011). The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infectious Diseases, 11(1), 37. https://doi.org/10.1186/1471-2334-11-37
  • Cesar, B., Zaida, H., Eva, S. F., & Miriam, N. (2020). Understanding COVID-19 spreading through simulation modeling and scenarios comparison: Preliminary results (March). Medrxiv. https://doi.org/10.1101/2020.03.30.20047043
  • Chadi, M. A., & Mousannif, H. 2020. Making sense of the current covid 19 situation and suggesting a tailored release strategy through modeling and simulation case study. Physics and Society. arXiv:2005.03477.
  • Chen, T. M., Rui, J., Wang, Q. P., Zhao, Z. Y., Cui, J. A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9(1), 24. https://doi.org/10.1186/s40249-020-00640-3.
  • Chumachenko, D., Meniailov, I., Bazilevych, K., & Chukhray, A. (2019). Intelligent multiagent approach to diphtheria infection epidemic process simulation. Proceedings of the electr. comput. eng. UKRCON, 833–836. https://doi.org/10.1109/UKRCON.2019.8879798
  • Chumachenko, D., Turiy, A., & Chukhray, A. (2019). Application of statistical simulation for measles epidemic process forecasting. Proceedings of the Electr. Comput. Eng. UKRCON, 1086–1090. https://doi.org/10.1109/UKRCON.2019.8879897
  • Currie, C. S. M., Fowler, J. W., Kotiadis, K., Monks, T., Onggo, B. S., Robertson, D. A., & Tako, A. A. (2020). How simulation modelling can help reduce the impact of COVID-19. Journal of Simulation, 14(2), 83–97. https://doi.org/10.1080/17477778.2020.1751570
  • Da Silva, A. (2021). Modeling COVID-19 in Cape Verde Islands - An application of SIR model. Computational and Mathematical Biophysics, 9(1), 1–13. https://doi.org/10.1515/cmb-2020-0114
  • Das, T. K., Savachkin, A. A., & Zhu, Y. (2008). A large-scale simulation model of pandemic influenza outbreaks for development of dynamic mitigation strategies. IIE Transactions, 40(9), 893–905. https://doi.org/10.1080/07408170802165856
  • Duan, W., Cao, Z., Ge, Y., & Qiu, X. (2011). Modeling and simulation for the spread of H1N1 influenza in school using artificial societies. Lecture Notes in Computer Science 6749, 121–129. https://doi.org/10.1007/978-3-642-22039-5_13
  • Duan, W., Fan, Z., Zhang, P., Guo, G., & Qiu, X. (2015). Mathematical and computational approaches to epidemic modeling: A comprehensive review. Frontiers of Computer Science, 9(5), 806–826. https://doi.org/10.1007/s11704-014-3369-2
  • Emrich, Š., Breitenecker, F., Zauner, G., & Popper, N. (2008). Simulation of influenza epidemics with a hybrid model—Combining cellular automata and agent based features. Proceedings of the International Conference Inf. Tech. Interface, 709–714. https://doi.org/10.1109/ITI.2008.4588498
  • Eriksson, H., Raciti, M., Basile, M., Cunsolo, A., Fröberg, A., Leifler, O., Ekberg, J., & Timpka, T. (2011). A cloud-based simulation architecture for pandemic influenza simulation. Proceedings of the annual symposium, 364–373.
  • Eriksson, H., Timpka, T., Ekberg, J., Spreco, A., Dahlström, Ö., Strömgren, M., & Holm, E. (2017). Dynamic multicore processing for pandemic influenza simulation. Proceedings of the Annual Symposium, 533–542.
  • Fang, H., Chen, J., & Hu, J. (2005). Modelling the SARS epidemic by a lattice-based Monte-Carlo simulation. Proceedings of the IEEE Eng Med Biol Soc, 7, 7470–7473. https://doi.org/10.1109/IEMBS.2005.1616239
  • Ferguson, N. M., Laydon, D., Nedjati, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L., Elsland, S., … Ghani, A. C. (2020). Report 9 - Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Technical Report.
  • Ghaffarzadegan, N., & Rahmandad, H. (2020). Simulation-based estimation of the spread of COVID-19. System Dynamics Review, 36(1), 101–129.
  • Girona, T. (2020). Confinement time required to avoid a quick rebound of COVID-19: Predictions from a monte carlo stochastic model. Frontiers in Physics, 8, 186. https://doi.org/10.3389/fphy.2020.00186
  • Guo, Z., Xu, S., Tong, L., Dai, B., Liu, Y., & Xiao, D. (2020). An artificially simulated outbreak of a respiratory infectious disease. BMC Public Health, 20(1), 135. https://doi.org/10.1186/s12889-020-8243-6
  • Hackl, J., & Dubernet, T. (2019). Epidemic spreading in urban areas using agent-based transportation models. Future Internet, 11(4), 92. https://doi.org/10.3390/fi11040092
  • Harder, N. (2020). Simulation amid the COVID-19 pandemic. Clinical Simulation in Nursing, 43, 1–2. https://doi.org/10.1016/j.ecns.2020.03.010
  • Hu, B., & Gong, J. (2009). Simulation of epidemic spread in social network. Proceedings of the international conference on management and service science, 1–4. https://doi.org/10.1109/ICMSS.2009.5305571
  • Hussein, B. A., & Hasson, S. T. (2019). A modeling and simulation approach to analyze and control transition states in epidemic models. Proceedings of the international conference on engineering technology & its applications, 94–98. https://doi.org/10.1109/IICETA47481.2019.9012976
  • Ibrahim, H. A., Mahir, D., Michael, M. W., & Suzanne, L. (2020). Modeling COVID-19: Forecasting and analyzing the dynamics of the outbreak in Hubei and Turkey. Medrxiv. https://doi.org/10.1101/2020.04.11.20061952
  • Ivanov, D. (2020). Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transportation Research. Part E, Logistics and Transportation Review, 136. https://doi.org/10.1016/j.tre.2020.101922
  • Jackson, C., Mangtani, P., Hawker, J., Olowokure, B., & Vynnycky, E. (2014). The effects of school closures on influenza outbreaks and pandemics: Systematic review of simulation studies. PLOS ONE, 9(5. https://doi.org/10.1371/journal.pone.0097297
  • Karalis, V., Ismailos, G., & Karatza, E. (2020). Chloroquine dosage regimens in patients with COVID-19: Safety risks and optimization using simulations. Safety Science, 129. https://doi.org/10.1016/j.ssci.2020.104842
  • Kasaie, P., & Kelton, W. D. (2013). Simulation optimization for allocation of epidemic-control resources. IIE Transactions on Healthcare Systems Engineering, 3(2), 78–93. https://doi.org/10.1080/19488300.2013.788102
  • Khalil, K. M., Abdel, A. M., Nazmy, T. T., & Salem, A. M. (2012). An agent-based modeling for pandemic influenza in Egypt. Intelligent Systems Reference Library, 33, 205–218. https://doi.org/10.1007/978-3-642-25755-1_11
  • Koo, J. R., Cook, A. R., Park, M., Sun, Y., Sun, H., Lim, J. T., Tam, C., & Dickens, B. L. (2020). Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study. The Lancet Infectious Diseases, 20(6), 678–688. https://doi.org/10.1016/S1473-3099(20)30162-6
  • Kristiansen, I. S., Burger, E. A., & de Blasio, B. F. (2020). Covid-19: simulation models for epidemics. Tidsskr. Den Nor. Łdots, 140(6). https://doi.org/10.4045/tidsskr.20.0225
  • Lee, B. Y., Brown, S. T., Korch, G. W., Cooley, P. C., Zimmerman, R. K., Wheaton, W. D., Zimmer, S. M., Grefenstette, J. J., Bailey, R. R., Assi, T. M., & Burke, D. S. (2010). A computer simulation of vaccine prioritization, allocation, and rationing during the 2009 H1N1 influenza pandemic. Vaccine, 28(31), 4875–4879. doi:10.1016/j.vaccine.2010.05.002.
  • Liu, S., Poccia, S., Candan, K. S., Chowell, G., & Sapino, M. L. (2016). epiDMS: Data management and analytics for decision-making from epidemic spread simulation ensembles. Journal of Infectious Diseases, 214(4), S427–S432. https://doi.org/10.1093/infdis/jiw305
  • Ma, Y., Bisset, K., Chen, J., Deodhar, S., & Marathe, M. (2011). Efficient implementation of complex interventions in large scale epidemic simulations. Proceedings of the winter simulation conference, 1349–1361. https://dl.acm.org/doi/abs/10.5555/2431518.2431681
  • Marzo, J. L., Cosgaya, S. G., & Scoglio, C. (2017). Network robustness simulator: A case study on epidemic models. Proceedings of the international workshop on resilient networks design & modeling, 1–6. https://doi.org/10.1109/RNDM.2017.8093018
  • Massaro, E., Ganin, A., Perra, N., Linkov, I., & Vespignani, A. (2018). Resilience management during large-scale epidemic outbreaks. Scientific Reports, 8(1), 1859 (1–9). https://doi.org/10.1038/s41598-018-19706-2
  • Mathirajan, M., & Sivakumar, A. I. (2006). A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. The International Journal of Advanced Manufacturing Technology, 29(9), 990–1001. doi:10.1007/s00170-005-2585-1.
  • Miksch, F., Pichler, P., Espinosa, K. J. P., Casera, K. S. T., Navarro, A. N., & Bicher, M. (2016). An agent-based epidemic model for dengue simulation in the Philippines. Proceedings of the winter simulation conference, 3202–3203. https://doi.org/10.1109/WSC.2015.7408470
  • Moore, S. E., & Okyere, E. (2020). Controlling the transmission dynamics of COVID-19. Populations and Evolution. http://arxiv.org/pdf/2004.00443v2
  • Mukaddes, A. M. M., & Sannyal, M. (2020). A simulation approach to predict the transmission of COVID-19 in Bangladesh. SSRN Electronic Journal. https://doi.org/10.13140/RG.2.2.27317.91367
  • Müller, S., Balmer, M., Charlton, W., Ewert, R., Neumann, A., Rakow, C., Schlenther, T., Nagel, K., & Benenson, I. (2021). Predicting the effects of COVID-19 related interventions in urban settings by combining activity-based modelling, agent-based simulation, and mobile phone data. PLoS ONE, 16(10), e0259037. https://doi.org/10.1371/journal.pone.0259037
  • Murad, D., Badshah, N., & Ali, S. (2018). Mathematical modeling and simulation for the dengue fever epidemic. Proceedings of the international conference on applied and engineering mathematics, 1–3. https://doi.org/10.1109/ICAEM.2018.8536289
  • Muscatello, D. J., Chughtai, A. A., Heywood, A., Gardner, L. M., Heslop, D. J., & MacIntyre, C. R. (2017). Translation of real-time infectious disease modeling into routine public health practice. Emerging Infectious Diseases, 23(5), 1–6. https://doi.org/10.3201/eid2305.161720
  • Mustafee, N., & Katsaliaki, K. (2020). Classification of the existing knowledge base of OR/MS research and practice (1990–2019) using a proposed classification scheme. Computers & Operations Research, 118. https://doi.org/10.1016/j.cor.2020.104920
  • Nag, S. (2020). A mathematical model in the time of COVID-19. https://doi.org/10.31219/osf.io/8n92h
  • Nsoesie, E. O., Beckman, R. J., Shashaani, S., Nagaraj, K. S., & Marathe, M. V. (2013). A simulation optimization approach to epidemic forecasting. PLOS ONE 8(6), e67164. https://doi.org/10.1371/journal.pone.0067164
  • Orbann, C., Sattenspiel, L., Miller, E., & Dimka, J. (2017). Defining epidemics in computer simulation models: How do definitions influence conclusions? Epidemics, 19, 24–32. https://doi.org/10.1016/j.epidem.2016.12.001
  • Oswaldo, T., Paul, L., & Manuela, L. (2022). Modeling and simulating Chinese cross-border e-commerce: An agent-based simulation approach. Journal of Simulation. https://doi.org/10.1080/17477778.2022.2043791
  • Park, J., Jang, J., & Ahn, I. (2017). Epidemic simulation of H1N1 influenza virus using GIS in South Korea. Proceedings of the international conference on information and communication technology convergence, 58–60. http://dx.doi.org/10.14257/ijbsbt.2016.8.6.06
  • Pigolotti, S., Chiuchiu, D., Villa, M. P., & Bhat, D. (2020). Modeling the COVID-19 epidemic in Okinawa. https://doi.org/10.1101/2020.04.20.20071977
  • Porath, R. (2020). Monte carlo simulations to avoid a 2nd wave of covid-19. 0–8.
  • Prieto, D. M., Das, T. K., Savachkin, A. A., Uribe, A., Izurieta, R., & Malavade, S. (2012). A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels. BMC Public Health, 12(1), 251. https://doi.org/10.1186/1471-2458-12-251
  • Reich, O., Shalev, G., & Kalvari, T. (2020). Modeling COVID-19 on a network: Super-spreaders, testing and containment. Medrxiv. https://doi.org/10.1101/2020.04.30.20081828
  • Rino, F., & Alessandro, S. (2021). An agent-based model to assess citizens’ acceptance of COVID-19 restrictions. Journal of Simulation. https://doi.org/10.1080/17477778.2021.1965501.
  • Sato, A. H., Ito, I., Sawai, H., & Iwata, K. (2015). An epidemic simulation with a delayed stochastic SIR model based on international socioeconomic-technological databases. Proceedings of the IEEE international conference on big data, 2732–2741. https://doi.org/10.1109/BigData.2015.7364074.
  • Shah, N. H., Sheoran, N., Jayswal, E. N., Shukla, D., Shukla, N., Shukla, J., & Shah, Y. (2020). Modelling COVID-19 transmission in the United States through interstate and foreign travels and evaluating impact of governmental public health interventions. Journal of Mathematical Analysis and Applications 22, 124896. https://doi.org/10.1016/j.jmaa.2020.124896
  • Shatnawi, M., Lazarova-Molnar, S., & Zaki, N. (2013). Modeling and simulation of epidemic spread: Recent advances. Proceedings of the international conference on innovation & technology, 118–123. https://doi.org/10.1109/Innovations.2013.6544404
  • Squazzoni, F., Polhill, J. G., Edmonds, B., Ahrweiler, P., Antosz, P., Scholz, G., Chappin, É., Borit, M., Verhagen, H., Giardini, F., & Gilbert, N. (2020). Computational models that matter during a global pandemic outbreak: A call to action. Journal of Artificial Societies and Social Simulation, 23(2), 10. https://doi.org/10.18564/jasss.4298
  • Stein, M. L., Rudge, J. W., Coker, R., van der Weijden, C., Krumkamp, R., Hanvoravongchai, P., Chavez, I., Putthasri, W., Phommasack, B., Adisasmito, W., Touch, S., Sat, L. M., Hsu, Y. C., Kretzschmar, M., & Timen, A. (2012). Development of a resource modelling tool to support decision makers in pandemic influenza preparedness: The asiaflucap simulator. BMC Public Health, 12(1), 870. doi:10.1186/1471-2458-12-870.
  • Sultanah, M. A., Harsha, G., Helsing, J. E. H., & Armin, R. M. (2019). Disease spread simulation to assess the risk of epidemics during the global mass gathering of Hajj pilgrimage. Proceedings of the winter simulation conference, 215–226. https://doi.org/10.1109/WSC40007.2019.9004669
  • Sumodhee, C., Hsieh, J. L., Sun, C. T., Huang, C. Y., & Chen, A. Y. M. (2005). Impact of social behaviors on HIV epidemic: A computer simulation view. Proceedings of the international conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, 550–556. https://doi.org/10.1109/cimca.2005.1631526
  • Sun, T., & Wang, Y. (2020). Modeling COVID-19 epidemic in Heilongjiang Province, China. Chaos, Solitons, and Fractals, 138. https://doi.org/10.1016/j.chaos.2020.109949
  • Swain, R. W., Lynn, W. R., Hodgson, T. A., Becker, N. G., & Johnson, K. G. (1972). Epidemic simulation for training in public health management. IEEE Transactions on Biomedical Engineering, 19(2), 120–125. https://doi.org/10.1109/TBME.1972.324106
  • Thomas, R. B., Anders, N., Gullhav, H. A., Jostien, D., & Kjetil, K. (2021). Simulating emergency patient flow during the COVID-19 pandemic. Journal of Simulation. https://doi.org/10.1080/17477778.2021.2015259
  • Tian, C., Zhang, X., Ding, W., & Cao, R. (2007). Epidemic alert and response framework and technology based on spreading dynamics simulation. Lecture Notes on Artificial Intelligence & Bioinformatics, 1032–1039. https://doi.org/10.1007/978-3-540-72588-6_166
  • Timpka, T., Eriksson, H., Gursky, E. A., Nyce, J. M., Morin, M., Jenvald, J., Strömgren, M., Holm, E., & Ekberg, J. (2009). Population-based simulations of influenza pandemics: Validity and significance for public health policy. Bulletin of the World Health Organization, 87(4), 305–311. https://doi.org/10.2471/blt.07.050203
  • Tsui, K. L., Wong, S. Y., Wu, J. T., Chow, C. B., Goldsman, D. M., & Nizam, A. (2018). Development of adaptable pandemic simulation models. Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi, 24(5), 23–25. https://www.hkmj.org/abstracts/v24%20Suppl%206n5/23.htm.
  • Varol, H. A. (2016). MOSES: A MATLAB Based open source stochastic epidemic simulator. Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, 2636–2639. https://doi.org/10.1109/EMBC.2016.7591271 .
  • Willem, L., Verelst, F., Bilcke, J., Hens, N., & Beutels, P. (2017). Lessons from a decade of individual-based models for infectious disease transmission: A systematic review (2006-2015). BMC Infectious Diseases, 17(1), 612. https://doi.org/10.1186/s12879-017-2699-8.
  • Wolfram, C. (2020). An agent-based model of COVID-19. Complex Systems, 29(1), 87–105. https://doi.org/10.25088/ComplexSystems.29.1.87
  • Wong, W. W. L., Feng, Z. Z., & Thein, H. H. (2016). A parallel sliding region algorithm to make agent-based modeling possible for a large-scale simulation: Modeling hepatitis C epidemics in Canada. IEEE Journal of Biomedical and Health Informatics, 20(6), 1538–1544.
  • Workman, A. D., Welling, D. B., Carter, B. S., Curry, W. T., Holbrook, E. H., Gray, S. T., Scangas, G. A., & Bleier, B. S. (2020). Endonasal instrumentation and aerosolization risk in the era of COVID-19: Simulation, literature review, and proposed mitigation strategies. International Forum of Allergy and Rhinology, 10(7), 798–805. https://doi.org/10.1002/alr.22577
  • Yadav, R. S. (2020). Mathematical modeling and simulation of SIR model for COVID−2019 epidemic outbreak: A case study of India. https://doi.org/10.1101/2020.05.15.20103077
  • Yan, Z., & Lan, Y. (2020). Modeling COVID-19 infection in a confined space. Nonlinear Dynamics, 101(3), 1–9. https://doi.org/10.1007/s11071-020-05802-4
  • Yang, Y., Atkinson, P. M., & Ettema, D. (2011). Analysis of CDC social control measures using an agent-based simulation of an influenza epidemic in a city. BMC Infectious Diseases, 11(1), 199. https://doi.org/10.1186/1471-2334-11-199
  • Zhang, Q., & Xu, L. (2012). Simulation of the spread of epidemics with individual’s contact using cellular automata modeling. Proceedings of the international conference inf. comput. sci,60–62. https://doi.org/10.1109/ICIC.2012.49.
  • Zhou, J., Gong, J., & Li, W. (2006). Human daily behavior based simulation for epidemic transmission: A case study of SARS. Proceedings of the international conference on artificial reality and telexistence workshops, 589–593. https://doi.org/10.1109/ICAT.2006.69

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.