1,319
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Modelling interdependencies in an electric motor manufacturing process using discrete event simulation

ORCID Icon, , &
Pages 604-625 | Received 27 Jun 2022, Accepted 05 Apr 2023, Published online: 17 Apr 2023

References

  • Albers, A., Stürmlinger, T., Mandel, C., Wang, J., de Frutos, M. B., & Behrendt, M. (2019). Identification of potentials in the context of design for industry 4.0 and modelling of interdependencies between product and production processes. Procedia CIRP, 84, 100–105. https://doi.org/10.1016/j.procir.2019.04.298
  • Autodesk. (2022). Fusion 360 | 3D CAD, CAM, CAE & PCB cloud-based software (Version V.2.014569) [Computer software]. https://www.autodesk.co.uk/products/fusion-360/.
  • Baier, L., Frommherz, J., Nöth, E., Donhauser, T., Schuderer, P., & Franke, J. (2019). Identifying failure root causes by visualizing parameter interdependencies with spectrograms. Journal of Manufacturing Systems, 53, 11–17. https://doi.org/10.1016/j.jmsy.2019.08.002
  • Budgaga, W., Malensek, M., Pallickara, S., Harvey, N., Breidt, F. J., & Pallickara, S. (2016). Predictive analytics using statistical, learning, and ensemble methods to support real-time exploration of discrete event simulations. Future Generation Computer Systems, 56, 360–374. https://doi.org/10.1016/j.future.2015.06.013
  • Capocchi, L., Federici, D., Yazidi, A., Henao, H., & Capolino, G. A. (2008). Asymmetrical behavior of a double-fed induction generator: Modeling, discrete event simulation and validation. In MELECON 2008-The 14th IEEE Mediterranean Electrotechnical Conference (pp. 465–471). https://doi.org/10.1109/MELCON.2008.4618479.
  • Chai, F., Li, Y., Pei, Y., & Li, Z. (2018). Accurate modelling and modal analysis of stator system in permanent magnet synchronous motor with concentrated winding for vibration prediction. IET Electric Power Applications, 12(8), 1225–1232. https://doi.org/10.1049/iet-epa.2017.0813
  • Concettoni, E., Cristalli, C., & Serafini, S. (2012). Mechanical and electrical quality control tests for small DC motors in production line. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, pp. 1883–1887. https://doi.org/10.1109/IECON.2012.6388914.
  • de Oliveira, B. C. F., Seibert, A. A., Fröhlich, H. B., da Costa, L. R. C., Lopes, L. B., Iervolino, L. A., Demay, M. B., & Flesch, R. C. C. (2018). Defect inspection in stator windings of induction motors based on convolutional neural networks. In 2018 13th IEEE international conference on industry applications (INDUSCON) (pp. 1143–1149). https://doi.org/10.1109/INDUSCON.2018.8627172.
  • Dobroschke, A. (2011). Fertigungstechnik - Erlangen: Flexible Automatisierungslösungen für die Fertigung wickeltechnischer Produkte. Meisenbach Verlag Bamberg. https://doi.org/10.25593/978-3-87525-317-7
  • Escudero-Ornelas, I. O., Tiwari, D., Farnsworth, M., & Tiwari, A. (2021). Modelling interdependencies in an electrical motor manufacturing process involving deformable material. In Advances in Manufacturing Technology XXXIV: Proceedings of the 18th International Conference on Manufacturing Research, Incorporating the 35th National Conference on Manufacturing Research, 7-10 September 2021, Derby, UK (15, 291). IOS Press. https://doi.org/10.3233/ATDE210051.
  • Gaied, M., M’Halla, A., & Othmen, K. B. (2017). Fuzzy diagnosis based on P-time Petri nets for a winding machine. In 2017 International Conference on Control, Automation and Diagnosis (ICCAD) (pp. 001–006). https://doi.org/10.1109/CADIAG.2017.8075621.
  • Ghandi, S., & Masehian, E. (2015). Assembly sequence planning of rigid and flexible parts. Journal of Manufacturing Systems, 36, 128–146. https://doi.org/10.1016/j.jmsy.2015.05.002
  • Hagedorn, J., Sell Le Blanc, F., & Fleischer, J. (2018). Handbook of coil winding. Springer Berlin Heidelberg.
  • Halwas, M., Ambs, P., Marsetz, M., Baier, C., Schigal, W., Hofmann, J., & Fleischer, J. (2018). Systematic development and comparison of concepts for an automated series-flexible trickle winding process. In 2018 8th International Electric Drives Production Conference (EDPC) (pp. 1–7). https://doi.org/10.1109/EDPC.2018.8658360.
  • Hofmann, J., Bold, B., Baum, C., & Fleischer, J. (2017). Investigations on the tensile force at the multi-wire needle winding process. In 2017 7th International Electric Drives Production Conference (EDPC) (pp. 1–6). https://doi.org/10.1109/EDPC.2017.8328142.
  • Islam, M. S., Islam, R., Sebastian, T., Chandy, A., & Ozsoylu, S. A. (2011). Cogging torque minimization in PM motors using robust design approach. IEEE Transactions on Industry Applications, 47(4), 1661–1669. https://doi.org/10.1109/TIA.2011.2154350
  • Karanayil, B., Rahman, M. F., & Grantham, C. (2005). Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks. IEEE Transactions on Energy Conversion, 20(4), 771–780. https://doi.org/10.1109/TEC.2005.853761
  • Khan, S., Farnsworth, M., McWilliam, R., & Erkoyuncu, J. (2020). On the requirements of digital twin-driven autonomous maintenance. Annual Reviews in Control, 50, 13–28. https://doi.org/10.1016/j.arcontrol.2020.08.003
  • Kißkalt, D., Mayr, A., von Lindenfels, J., & Franke, J. (2018). Towards a data-driven process monitoring for machining operations using the example of electric drive production. In 2018 8th International electric drives production conference (EDPC) (pp. 1–6). https://doi.org/10.1109/EDPC.2018.8658293.
  • Komodromos, A., Löbbe, C., & Tekkaya, A. E. (2017). Development of forming and product properties of copper wire in a linear coil winding process. In 2017 7th International Electric Drives Production Conference (EDPC) (pp. 1–7). https://doi.org/10.1109/EDPC.2017.8328143.
  • Lanner Group Ltd. (2021) WITNESS simulation modeling software (Version 24) [Computer software]. https://www.lanner.com/en-us/technology/witness-simulation-software.html
  • Lomakin, A., Mayr, A., Graichen, K., & Franke, J. (2020). Optimization of direct winding processes based on a holistic control approach. In 2020 10th International Electric Drives Production Conference (EDPC) (pp. 1–7). https://doi.org/10.1109/EDPC51184.2020.9388184.
  • Mayr, A., Kißkalt, D., Lomakin, A., Graichen, K., & Franke, J. (2021). Towards an intelligent linear winding process through sensor integration and machine learning techniques. Procedia CIRP, 96, 80–85. https://doi.org/10.1016/j.procir.2021.01.056
  • Mayr, A., Lechler, T., Donhauser, T., Metzner, M., Schäffer, E., Fischer, E., & Franke, J. (2019). Advances in energy-related plant simulation by considering load and temperature profiles in discrete event simulation. Procedia CIRP, 81, 1325–1330. https://doi.org/10.1016/j.procir.2019.04.021
  • Meyer, A., Heyder, A., Brela, M., Urban, N., Sparrer, J., & Franke, J. (2015). Fully automated rotor inspection apparatus with high flexibility for permanent magnet synchronous motors using an improved hall sensor line array. 2015 5th International Electric Drives Production Conference. https://doi.org/10.1109/EDPC.2015.7323196
  • Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241–261. https://doi.org/10.1016/j.jmsy.2013.12.007
  • Onaji, I., Tiwari, D., Soulatiantork, P., Song, B., & Tiwari, A. (2022). Digital twin in manufacturing: Conceptual framework and case studies. International Journal of Computer Integrated Manufacturing, 1–28. https://doi.org/10.1080/0951192X.2022.2027014.
  • Paryanto, P. (2017). Mechatronic simulation approach for the process planning of energy-efficient handling systems. Meisenbach Verlag Bamberg. https://doi.org/10.25593/978-3-87525-424-2
  • Prajapat, N., Tiwari, A., Tiwari, D., Turner, C., & Hutabarat, W. (2019). A framework for next generation interactive and immersive des models. In 2019 IEEE 17th International Conference on Industrial Informatics (INDIN) (Vol. 1, pp. 671–676). https://doi.org/10.1109/INDIN41052.2019.8972266.
  • Prajapat, N., Turner, C., Tiwari, A., Tiwari, D., & Hutabarat, W. (2020). Real-time discrete event simulation: A framework for an intelligent expert system approach utilising decision trees. International Journal of Advanced Manufacturing Technology, 110(11), 2893–2911. https://doi.org/10.1007/s00170-020-06048-5
  • Ross, K., (2021). Industry reacts to UK green revolution plan. Smart Energy International. https://www.smart-energy.com/industry-sectors/policy-regulation/industry-reacts-to-uk-green-revolution-plan/.
  • Sell Le Blanc, F., Fleischer, J., Sautter, S., Delzs, T., & Hagedorn, J. (2014). Fault analysis of linear winding processes for noncircular orthocyclic coils: Investigation of winding scheme dependencies within the winding process development. In 2014 4th International Electric Drives Production Conference (EDPC) (pp. 1–8). https://doi.org/10.1109/EDPC.2014.6984402.
  • Sell Le Blanc, F., Fleischer, J., Schmitt, M., Unger, M., & Hagedorn, J. (2015). Analysis of wire tension control principles for highly dynamic applications in coil winding: Investigation of new tension control devices for noncircular orthocyclic coils. In 2015 5th International Electric Drives Production Conference (EDPC) (pp. 1–8). https://doi.org/10.1109/EDPC.2015.7323202.
  • Sell Le Blanc, F., Hofmann, J., Simmler, R., & Fleischer, J. (2016). Coil winding process modelling with deformation based wire tension analysis. CIRP Annals, 65(1), 65–68. https://doi.org/10.1016/j.cirp.2016.04.037
  • Sell Le Blanc, F., Ruprecht, E., & Fleischer, J. (2013). Material based process model for linear noncircular coil winding processes with large wire gauge: Investigation of wire material influences on the winding process and compensation approaches. In 2013 3rd International Electric Drives Production Conference (EDPC) (pp. 1–5). https://doi.org/10.1109/EDPC.2013.6689731.
  • Tiwari, D., Farnsworth, M., Zhang, Z., Jewell, G. W., & Tiwari, A. (2021). In-process monitoring in electrical machine manufacturing: A review of state of the art and future directions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(13), 2035–2051. https://doi.org/10.1177/09544054211016675
  • Wang, B., Tian, G., Liang, Y., & Qiang, T. (2014). Reliability modeling and evaluation of electric vehicle motor by using fault tree and extended stochastic Petri nets. Journal of Applied Mathematics, 2014. https://doi.org/10.1155/2014/638013
  • Weigelt, M., Kink, J., Mayr, A., Lindenfels, J. V., Kühl, A., & Franke, J. (2019). Digital twin of the linear winding process based on explicit finite element method. In 2019 9th international electric drives production conference (EDPC) (pp. 1–7). https://doi.org/10.1109/EDPC48408.2019.9011857.
  • Wolf, K. U. (1997). Verbesserte Prozessführung und Prozessplanung zur Leistungs-und Qualitätssteigerung beim Spulenwickeln. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
  • Zaeh, M., & Siedl, D. (2007). A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools. CIRP Annals, 56(1), 383–386. https://doi.org/10.1016/j.cirp.2007.05.089