638
Views
39
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Ultrastructural features affecting mechanical properties of wood fibres

, , &
Pages 146-170 | Received 04 Sep 2006, Published online: 15 Mar 2007

References

  • Abe , H. and Funada , R. 2005 . Review—The orientation of cellulose microfibrils in the cell walls of tracheids in conifers . Iawa Journal , 26 : 161 – 174 .
  • Abe , H. , Ohtani , J. and Fukazawa , K. 1991 . FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids . IAWA Bulletin New Series , 12 : 431 – 438 .
  • Abe , H. , Ohtani , J. and Fukazawa , K. 1992 . Microfibrillar orientation of the innermost surface of conifer tracheid walls . IAWA Bulletin New Series , 13 : 411 – 417 .
  • Aboudi , J. 1991 . Mechanics of composite materials. A unified micromechanical approach. Studies in applied mechanics, 29 , 328 Amsterdam : Elsevier Science .
  • Åkerholm , M. and Salmén , L. 2003 . The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy . Holzforschung , 57 : 459 – 465 .
  • Anagnost , S. E. , Mark , R. E. and Hanna , R. B. 2002 . Variation of microfibril angle within individual tracheids . Wood and Fiber Science , 34 : 337 – 349 .
  • Andersson , S. , Wikberg , H. , Pesonen , E. , Maunu , S. and Serimaa , R. 2004 . Studies of crystallinity of Scots pine and Norway spruce cellulose . Trees—Structure and Function , 18 : 346 – 353 .
  • Astley , R. J. , Stol , K. A. and Harrington , J. J. 1998 . Modelling the elastic properties of softwood—Part II: The cellular microstructure . Holz Als Roh- und Werkstoff , 56 : 43 – 50 .
  • Barber , N. F. 1968 . A theoretical model of shrinking wood . Holzforschung , 22 : 97 – 103 .
  • Barber , N. F. and Meylan , B. A. 1964 . The anisotropic shrinkage of wood. A theoretical model . Holzforschung , 18 : 146 – 156 .
  • Bardage , S. L. 2001 . Three-dimensional modeling and visualization of whole Norway spruce latewood tracheids . Wood and Fiber Science , 33 : 627 – 638 .
  • Bardage , S. L. , Donaldson , L. , Tokoh , C. and Daniel , G. 2004 . Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces . Nordic Pulp and Paper Research Journal , 19 : 448 – 452 .
  • Barnett , J. R. and Bonham , V. A. 2004 . Cellulose microfibril angle in the cell wall of wood fibres . Biological Reviews , 79 : 461 – 472 .
  • Barrett , J. D. and Schniewind , A. P. 1973 . Three-dimensional finite-element models of cylindrical wood fibers . Wood and Fiber , 5 : 215 – 225 .
  • Batchelor , W. J. , Conn , A. B. and Parker , I. H. 2000 . Comparison of techniques to measure the fibril angle . Appita Journal , 53 : 432 – 437 .
  • Bergander , A. and Salmén , L. 2002 . Cell wall properties and their effects on the mechanical properties of fibers . Journal of Materials Science , 37 : 151 – 156 .
  • Bergander , A. , Brändström , J. , Daniel , G. and Salmén , L. 2002 . Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy . Journal of Wood Science , 48 : 255 – 263 .
  • Bledzki , A. K. and Gassan , J. 1999 . Composites reinforced with cellulose based fibres . Progress in Polymer Science , 24 : 221 – 274 .
  • Bodig , J. and Jayne , B. A. 1982 . Mechanics of wood and wood composites , New York : Van Nostrand Reinhold .
  • Booker , R. E. and Sell , J. 1998 . The nanostructure of the cell wall of softwoods and its functions in a living tree . Holz Als Roh- und Werkstoff , 56 : 1 – 8 .
  • Boyd , J. D. 1982 . “ An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on strength ” . In New perspectives in wood anatomy , Edited by: Baas , P. 171 – 222 . The Hague : Martinus Nijhoff .
  • Boyd , J. D. and Foster , R. C. 1975 . Microfibrils in primary and secondary wall growth develop trellis configurations . Canadian Journal of Botany—Revue Canadienne De Botanique , 53 : 2687 – 2701 .
  • Brändström , J. 2001 . Micro- and ultrastructural aspects of Norway spruce tracheids: A review . IAWA Journal , 22 : 333 – 353 .
  • Brändström , J. ( 2002 ). Morphology of Norway spruce tracheids with emphasis on cell wall organisation . Doctoral thesis. Department of Wood Science, Acta Universitatis Agriculturae Sueciae, Silvestria , Vol. 237 (p. 39 ). Uppsala : Swedish University of Agricultural Sciences .
  • Brändström , J. , Bardage , S. L. , Daniel , G. and Nilsson , T. 2003 . The structural organisation of the S1 cell wall layer of Norway spruce tracheids . IAWA Journal , 24 : 27 – 40 .
  • Cave , I. D. 1968 . The anisotropic elasticity of the plant cell wall . Wood Science and Technology , 2 : 268 – 278 .
  • Cave , I. D. 1969 . The longitudinal Young's modulus of Pinus radiata . Wood Science and Technology , 3 : 40 – 48 .
  • Cave , I. D. 1972 . A theory of the shrinkage of wood . Wood Science and Technology , 6 : 284 – 292 .
  • Cave , I. D. 1978a . Modelling moisture-related mechanical properties of wood. Part I: Properties of the wood constituents . Wood Science and Technology , 12 : 75 – 86 .
  • Cave , I. D. 1978b . Modelling moisture-related mechanical properties of wood. Part II: Computation of properties of a model of wood and comparison with experimental data . Wood Science and Technology , 12 : 127 – 139 .
  • Chou , P. C. , Carleone , J. and Hsu , C. M. 1972 . Elastic constants of layered media . Journal of Composite Materials , 6 : 80 – 93 .
  • Chou , T.-W. 1992 . Microstructural design of fiber composites. Cambridge Solid State Science Series) , 569 Cambridge : Cambridge University Press .
  • Conners , T. E. 2001 . “ Wood: Ultrastructure ” . In Encyclopedia of materials: Science and technology) , Edited by: Buschow , K. H. J. , Cahn , R. W. , Flemings , M. C. , Ilschner , B. , Kramer , E. J. and Mahajan , S. 9751 – 9759 . Amsterdam : Elsevier Science .
  • Cousins , W. J. 1976 . Elastic modulus of lignin as related to moisture content . Wood Science and Technology , 10 : 9 – 17 .
  • Cousins , W. J. 1977 . Elasticity of isolated lignin: Young's modulus by a continuous indentation method . New Zealand Journal of Forestry Science , 7 : 107 – 112 .
  • Cousins , W. J. 1978 . Young's modulus of hemicellulose as related to moisture content . Wood Science and Technology , 12 : 161 – 167 .
  • Cowdrey , D. R. and Preston , R. D. 1966 . Elasticity and microfibrillar angle in the wood of sitka spruce. Proceedings of the Royal Society of London. Series B . Biological Sciences , 166 : 245 – 272 .
  • Cox , H. L. 1952 . The elasticity and strength of paper and other fibrous materials . British Journal of Applied Physics , 3 : 72 – 79 .
  • Davies , G. C. and Bruce , D. M. 1997 . A stress analysis model for composite coaxial cylinders . Journal of Materials Science , 32 : 5424 – 5437 .
  • Duchesne , I. , Takabe , K. and Daniel , G. 2003 . Ultrastructural localisation of glucomannan in kraft pulp fibres . Holzforschung , 57 : 62 – 68 .
  • Duncker , B. & Nordman , L. ( 1968 ). Den enskilda fiberns mekaniska egenskaper . Svensk Papperstidning , 71 , 165 – 177 . ( In Swedish .)
  • Dunning , C. E. 1968 . Cell-wall morphology of longleaf pine latewood . Wood Science , 1 : 65 – 76 .
  • Ehrnrooth , E. M. L. and Kolseth , P. 1984 . The tensile testing of single wood pulp fibers in air and in water . Wood and Fiber Science , 16 : 549 – 566 .
  • Eichhorn , S. J. , Baillie , C. A. , Zafeiropoulos , N. , Mwaikambo , L. Y. , Ansell , M. P. Dufresne , A. 2001 . Review: Current international research into cellulosic fibres and composites . Journal of Materials Science , 36 : 2107 – 2131 .
  • El-Hosseiny , F. and Page , D. H. 1973 . The measurement of fibril angle of wood fibers using polarized light . Wood and Fiber Science , 5 : 208 – 214 .
  • Fahlén , J. and Salmen , L. 2002 . On the lamellar structure of the tracheid cell wall . Plant Biology , 4 : 339 – 345 .
  • Fahlén , J. and Salmén , L. 2003 . Cross-sectional structure of the secondary wall of wood fibers affected by processing . Journal of Materials Science , 38 : 119 – 126 .
  • Fahlén , J. and Salmén , L. 2005 . Ultrastructural changes in a holocellulose pulp revealed by enzymes, thermoporosimetry and atomic force microscopy . Holzforschung , 59 : 589 – 597 .
  • Fengel , D. 1969 . The ultrastructure of cellulose from wood. Part 1: Wood as basic material for isolation of cellulose . Wood Science and Technology , 3 : 203 – 217 .
  • Fengel , D. 1970 . Ultrastructural behavior of cell wall polysaccharides . TAPPI , 53 : 497 – 503 .
  • Fengel , D. 1972 . Structure and function of the membrane in softwood bordered pits . Holzforschung , 26 : 1 – 9 .
  • Fengel , D. and Stoll , M. 1973 . On the variation of the cell cross area, the thickness, of the cell wall and of the wall layers of sprucewood tracheids within an annual ring . Holzforschung , 27 : 1 – 7 .
  • Fernando , D. and Daniel , G. 2004 . Micro-morphological observations on spruce TMP fibre fractions with emphasis on the fibre cell wall fibrillation and splitting . Nordic Pulp and Paper Research Journal , 19 : 278 – 285 .
  • Frey-Wyssling , A. 1954 . The fine structure of cellulose microfibrils . Science , 119 : 80 – 82 .
  • Gassan , J. , Chate , A. and Bledzki , A. K. 2001 . Calculation of elastic properties of natural fibers . Journal of Materials Science , 36 : 3715 – 3720 .
  • Gillis , P. P. 1970 . Elastic moduli for plane stress analyses of unidirectional composites with anisotropic rectangular reinforcement . Fibre Science and Technology , 2 : 193 – 210 .
  • Gillis , P. P. and Mark , R. E. 1973 . Analysis of shrinkage, swelling, and twisting of pulp fibres . Cellulose Chemistry and Technology , 7 : 209 – 234 .
  • Gomez-Bueso , J. , Westin , M. , Torgilsson , R. , Olesen , P.O. and Simonson , R. 2000 . Composites made from acetylated lignocellulosic fibres of different origin—Part I. Properties of dry-formed fibreboards . Holz als Roh- und Werkstoff , 58 : 9 – 14 .
  • Groom , L. H. , Mott , L. and Shaler , S. M. 2002 . Mechanical properties of individual southern pine fibers. Part I. Determination and variability of stress–strain curves with respect to tree height and juvenility . Wood and Fiber Science , 34 : 14 – 27 .
  • Halpin , J. C. and Kardos , J. L. 1976 . Halpin–Tsai equations—Review . Polymer Engineering and Science , 16 : 344 – 352 .
  • Harada , H. and Côté , W. A. Jr . 1985 . “ Structure of wood ” . In Biosynthesis and biodegradation of wood components , Edited by: Higuchi , T. 679 Orlando, FL : Academic Press .
  • Harrington , J. J. , Booker , R. and Astley , R. J. 1998 . Modelling the elastic properties of softwood—Part I: The cell-wall lamellae . Holz Als Roh- und Werkstoff , 56 : 37 – 41 .
  • Hashin , Z. 1979 . Analysis of properties of fiber composites with anisotropic constituents . Journal of Applied Mechanics , 46 : 543 – 550 .
  • Haygreen , J. G. and Bowyer , J. L. 1982 . Forest products and wood science ) , 495 Ames, IA : Iowa State University Press .
  • Hearle , J. W. S. 1963 . The fine structure of fibers and crystalline polymers. III. Interpretation of the mechanical properties of fibers . Journal of Applied Polymer Science , 7 : 1207 – 1223 .
  • Hepworth , D. G. and Vincent , J. F. V. 1998 . Modelling the mechanical properties of xylem tissue from tobacco plants (Nicotiana tabacum “Samsun”) by considering the importance of molecular and micromechanisms . Annals of Botany , 81 : 761 – 770 .
  • Herman , M. , Dutilleul , P. and Avella-Shaw , T. 1999 . Growth rate effects on intra-ring and inter-ring trajectories of microfibril angle in Norway spruce (Picea abies) . IAWA Journal , 20 : 3 – 21 .
  • Hill , R. 1965 . Theory of mechanical properties of fibre-strengthened materials—III. Self-consistent model . Journal of the Mechanics and Physics of Solids , 13 : 189 – 198 .
  • Hua , L. , Zadorecki , P. and Flodin , P. 1987 . Cellulose fiber–polyester composites with reduced water sensitivity I. Chemical treatment and mechanical properties . Polymer Composites , 8 : 199 – 202 .
  • Ishikawa , A. , Okano , T. and Sugiyama , J. 1997 . Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI . Polymer , 38 : 463 – 468 .
  • Jaswon , M. A. , Gillis , P. P. and Mark , R. E. 1968 . The elastic constants of crystalline native cellulose. Proceedings of the Royal Society of London. Series A . Mathematical and Physical Sciences , 306 : 389 – 412 .
  • Kataoka , Y. , Saiki , H. and Fujita , M. 1992 . Arrangement and superimposition of cellulose microfibrils in the secondary walls of coniferous tracheids . Mokuzai Gakkaishi , 38 : 327 – 335 .
  • Keckes , J. , Burgert , I. , Fruhmann , K. , Muller , M. , Kolln , K. Hamilton , M. 2003 . Cell-wall recovery after irreversible deformation of wood . Nature Materials , 2 : 810 – 814 .
  • Kerr , A. J. and Goring , D. A. I. 1975 . The ultrastructural arrangement of the wood cell wall . Cellulose Chemistry and Technology , 9 : 563 – 573 .
  • Kollman , F. F. P. and Côté , W. A. 1968 . Principles of wood science and technology. 1. Solid wood , Berlin : Springer .
  • Koponen , S. , Toratti , T. and Kanerva , P. 1989 . Modelling longitudinal elastic and shrinkage properties of wood . Wood Science and Technology , 23 : 55 – 63 .
  • Larsen , M. J. , Winandy , J. E. and Green , F. 1995 . A proposed model of the tracheid cell wall of southern yellow pine having an inherent radial structure in the S-2 layer . Material und Organismen , 29 : 197 – 210 .
  • Lekhnitskii , S. G. 1981 . Theory of elasticity of an anisotropic body , 430 Moscow : Mir .
  • Lichtenegger , H. , Reiterer , A. , Stanzl-Tschegg , S. E. and Fratzl , P. 1999 . Variation of cellulose microfibril angles in softwoods and hardwoods—A possible strategy of mechanical optimization . Journal of Structural Biology , 128 : 257 – 269 .
  • Mark , R. E. 1967 . Cell wall mechanics of tracheids , 241 New Haven : Yale University Press .
  • Mark , R. E. 1980 . Molecular and cell wall structure of wood . Journal of Educational Modules for Materials Science and Engineering , 2 : 251 – 308 .
  • Mark , R. E. and Gillis , P. P. 1970 . New models: Cell-wall mechanics . Wood and Fiber , 2 : 79 – 95 .
  • Mark , R. E. and Gillis , P. P. 1973 . The relationship between fiber modulus and S2 angle . TAPPI , 56 : 164 – 167 .
  • Marklund , E. ( 2005 ). Micromechanism based material models for natural fiber composites (p. 120 ). Licentiate thesis. Department of Applied Physics and Mechanical Engineering, Division of Polymer Engineering, Luleå University of Technology , Luleå , Sweden .
  • Matsuo , M. , Sawatari , C. , Iwai , Y. and Ozaki , F. 1990 . Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II . Biomacromolecules , 23 : 3266 – 3275 .
  • Meylan , B. A. 1972 . The influence of microfibril angle on the longitudinal shrinkage–moisture content relationship . Wood Science and Technology , 6 : 293 – 301 .
  • Meylan , B. A. and Butterfield , B. G. 1978 . Helical orientation of the microfibrils in tracheids, fibres and vessels . Wood Science and Technology , 12 : 219 – 222 .
  • Mohanty , A. K. , Misra , M. and Hinrichsen , G. 2000 . Biofibres, biodegradable polymers and biocomposites: An overview . Macromolecular Materials and Engineering , 276/277 : 1 – 24 .
  • Morton , J. , Quarmley , J. & Rossi , L. ( 2003 ). Current and emerging applications for natural and woodfiber–plastic composites . In 7th International Conference on Woodfiber–Plastic Composites (pp. 3 – 6 ). Madison, WI : Forest Products Society .
  • Mueller , D. H. and Krobjilowski , A. 2003 . New discovery in the properties of composite reinforced with natural fibers . Journal of Industrial Textiles , 33 : 111 – 130 .
  • Nabi Saheb , D. and Jog , J. P. 1999 . Natural fiber polymer composites: A review . Advances in Polymer Technology , 18 : 351 – 363 .
  • Nakamura , K. I. , Wada , M. , Kuga , S. and Okano , T. 2004 . Poisson's ratio of cellulose Ib and cellulose II . Journal of Polymer Science Part B: Polymer Physics , 42 : 1206 – 1211 .
  • Neagu , R. C. , Gamstedt , E. K. & Lindström , M. ( 2006 ). Modelling the effects of ultrastructural morphology on the elastic properties of wood fibres . In Prpceedings of the 5th Plant Biomechanics Conference , Vol 1 , Salmén L. ( ed. ), pp. 193 – 198 . Stockholm : STFI-Packforsk AB .
  • Nishino , T. , Takano , K. and Nakamae , K. 1995 . Elastic modulus of the crystalline regions of cellulose polymorphs . Journal of Polymer Science Part B: Polymer Physics , 33 : 1647 – 1651 .
  • Page , D. H. & El-Hosseiny , F. ( 1983 ). The mechanical properties of single wood pulp fibres. Part VI. Fibril angle and the shape of the stress–strain curve . Journal of Pulp and Paper Science , 9 ( 4 ), TR 99 – 100 .
  • Page , D. H. , El-Hosseiny , F. , Winkler , K. and Lancaster , A. P. S. 1977 . Elastic modulus of single wood pulp fibres . TAPPI , 60 : 114 – 117 .
  • Panshin , A. J. and de Zeeuw , C. 1980 . Textbook of wood technology , New York : McGraw-Hill .
  • Persson , K. ( 2000 ). Micromechanical modelling of wood and fibre properties (p. 213 ). Doctoral thesis. Department of Mechanics and Materials, Structural Mechanics, LTH, Lund University , Lund , Sweden .
  • Peura , M. , Müller , M. , Serimaa , R. , Vainio , U. , Sarén , M.-P. Saranpää , P. 2005 . Structural studies of single wood cell walls by synchrotron X-ray microdiffraction and polarised light microscopy . Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 238 ( 1–4 ) : 16 – 20 .
  • Reiterer , A. , Jakob , H. F. , Stanzl-Tschegg , S. E. and Fratzl , P. 1998 . Spiral angle of elementary cellulose fibrils in cell walls of Picea abies determined by small-angle X-ray scattering . Wood Science and Technology , 32 : 335 – 345 .
  • de Ruvo , A. , Lundberg , R. , Martin-Löf , S. & Söremark , C. ( 1976 ). Influence of temperature and humidity on the elastic and expansional properties of paper and the constituent fibre . In F. Bolam ( Ed .), The fundamental properties of paper related to its uses, Transactions of the Symposium 1973 , 2 (pp. 785 – 806 ). London : British Paper and Board Makers’ Association .
  • Saha , A. K. , Das , S. , Basak , R. K. and Mitra , B. C. 2000 . Improvement of functional properties of jute-based composite by acrylonitrile pre-treatment . Journal of Applied Polymer Science , 76 : 1652 – 1661 .
  • Sakurada , I. , Nukushina , Y. and Ito , T. 1962 . Experimental determination of the elastic modulus of crystalline regions in oriented polymers . Journal of Polymer Science , 57 : 651 – 660 .
  • Säll , H. 2002 . Spiral grain in Norway spruce . Acta Wexionensia , 22 : 171
  • Salmén , L. 2004 . Micromechanical understanding of the cell-wall structure . Comptes Rendus Biologies , 327 : 873 – 880 .
  • Salmén , L. and Olsson , A. M. 1998 . Interaction between hemicelluloses, lignin and cellulose: Structure–property relationships . Journal of Pulp and Paper Science , 24 : 99 – 103 .
  • Salmén , L. and de Ruvo , A. 1985 . A model for prediction of fiber elasticity . Wood and Fiber Science , 17 : 336 – 350 .
  • Salmén , L. , Kolseth , P. and de Ruvo , A. 1985 . Modeling the softening behaviour of wood fibres . Journal of Pulp and Paper Science , 11 : 102 – 107 .
  • Scallan , A. M. 1974 . The structure of the cell wall of wood—A consequence of anisotropic inter-microfibrillar bonding? . Wood Science , 6 : 266 – 270 .
  • Schniewind , A. P. and Barrett , J. D. 1969 . Cell wall model with complete shear restraint . Wood and Fiber , 1 : 205 – 214 .
  • Schulgasser , K. ( 1987 ). Moisture and thermal expansion of wood, particle board and paper . Proceedings of the International Paper Physics Conference , Quebec, Canada: Mont-Rolland, TAPPI, Atlanta, GA, USA (pp. 53 – 63 ).
  • Sell , J. and Zimmermann , T. 1993 . Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white Fir . Holz Als Roh- und Werkstoff , 51 : 384 – 384 .
  • Sirviö , J. and Kärenlampi , P. 1998 . Pits as natural irregularities in softwood fibres . Wood and Fiber Science , 30 : 27 – 39 .
  • Sjöström , E. 1981 . Wood chemistry. Fundamentals and applications , 223 New York : Academic Press .
  • Stone , J. E. , Scallan , A. M. and Ahlgren , P. A. V. 1971 . The ultrastructural distribution of lignin in tracheid cell wall . TAPPI , 54 : 1527 – 1530 .
  • Tang , R. C. 1972 . Three-dimensional analysis of elastic behaviour of wood fiber . Wood and Fiber , 3 : 210 – 219 .
  • Tarn , J. Q. and Wang , Y. M. 2001 . Laminated composite tubes under extension, torsion, bending, shearing and pressuring: A state space approach . International Journal of Solids and Structures , 38 : 9053 – 9075 .
  • Tashiro , K. and Kobayashi , M. 1991 . Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds . Polymer , 3 : 1516 – 1526 .
  • Wardrop , A. B. and Dadswell , H. E. 1953 . The development of the conifer tracheid . Holzforschung , 7 : 33
  • Wardrop , A. B. and Preston , R. D. 1947 . Organisation of the cell walls of tracheids and wood fibres . Nature , 160 : 911 – 913 .
  • Wheeler , E. 2001 . “ Wood: Macroscopic anatomy ” . In Encyclopedia of materials: Science and technology , Edited by: Buschow , K. H. J. , Cahn , R. W. , Flemings , M. C. , Ilschner , B. , Kramer , E. J. and Mahajan , S. 9653 – 9658 . Amsterdam : Elsevier Science .
  • Wilhelmsson , D. 2006 . Finite element modelling of mechanical properties of geometrically characterized wood fibres. Master's thesis. KTH Solid Mechanics ) , 56 Stockholm, , Sweden : Royal Institute of Technology (KTH) .
  • Wilhelmsson , D. , Neagu , R. C. , Bardage , S. L. & Gamstedt , E. K. ( 2006 ). Finite element modelling of mechanical properties of geometrically characterized wood fibres . 5th Plant Biomechanics Conference , Vol 1 , Salmén L. ( ed. ), pp. 181 – 186 . Stockholm : STFI-Packforsk .
  • Yamamoto , H. 1999 . A model of the anisotropic swelling and shrinking process of wood. Part 1. Generalization of Barber's wood fiber model . Wood Science and Technology , 33 : 311 – 325 .
  • Yamamoto , H. , Sassus , F. , Ninomiya , M. and Gril , J. 2001 . A model of anisotropic swelling and shrinking process of wood—Part 2. A simulation of shrinking wood . Wood Science and Technology , 35 : 167 – 181 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.