401
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Crack influence on load-bearing capacity of glued laminated timber using extended finite element modelling

, , &
Pages 335-343 | Received 03 Sep 2014, Accepted 12 Feb 2015, Published online: 07 Apr 2015

References

  • ABAQUS (2012) 6.12 User's Manual (Providence, RI: Dassault Systèmes Simulia Corp.).
  • Belytschko, T. and Black, T. (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45, 601–620.10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  • Dai, G. and Mishnaevsky, L. Jr. (2013) Damage evolution in nanoclay-reinforced polymers: A three-dimensional computational study. Composites Science and Technology, 74, 67–77.10.1016/j.compscitech.2012.10.003
  • Daudeville, L. (1999) Fracture in spruce: Experiment and numerical analysis by linear and non linear fracture mechanics. Holz als Roh- und Werkstoff, 57, 425–432.10.1007/s001070050068
  • Daudeville, L., Davenne, L. and Yasumura, M. (1999) Prediction of the load carrying capacity of bolted timber joints. Wood Science and Technology, 33, 15–29.10.1007/s002260050095
  • Dourado, N., Morel, S., de Moura, M. F. S. F., Valentin, G. and Morais, J. (2008) Comparison of fracture properties of two wood species through cohesive crack simulations. Composites Part A: Applied Science and Manufacturing, 39, 415–427.10.1016/j.compositesa.2007.08.025
  • Ehart, R. J. A., Stanzl-Tschegg, S. E. and Tschegg, E. K. (1999) Mode III fracture energy of wood composites in comparison to solid wood. Wood Science and Technology, 33, 391–405.10.1007/s002260050125
  • EN 1995-2:2004 (2004) Eurocode 5: Design of Timber Structures – Part 2: Bridges (Brussel: European Committee for Standardization).
  • Fortino, S., Zagari, G., Mendicino, A. L. and Dill-Langer, G. (2012) A simple approach for FEM simulation of mode I cohesive crack growth in glued laminated timber under short-term loading. Journal of Structural Mechanics, 45, 1–20.
  • Franke, B. and Quenneville, P. (2014) Analysis of the fracture behavior of radiata pine timber and laminated veneer lumber. Engineering Fracture Mechanics, 116, 1–12.10.1016/j.engfracmech.2013.12.004
  • Frühmann, K., Reiterer, A., Tschegg, E. K. and Stanzl-Tschegg, S. S. (2002) Fracture characteristics of wood under mode I, mode II and mode III loading. Philosophical Magazine A, 82, 3289–3298.
  • Guan, Z. W. and Zhu, E. C. (2004) Nonlinear finite element modeling of crack behavior in oriented strand board webbed wood I-beams with openings. Journal of Structural Engineering, 130, 1562–1569.10.1061/(ASCE)0733-9445(2004)130:10(1562)
  • Haller, P. and Putzger, R. (2005) Fracture energy in mode I and mode II of reinforced wood. 11th International Conference on Fracture, 20–25 March (Turin).
  • Melenk, J. M. and Babuška, I. (1996) The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139, 289–314.10.1016/S0045-7825(96)01087-0
  • Nicole, M., Stark, N. M., Cai, Z. and Carll, C. (2010) Wood-based composite materials. In Wood Handbook Wood as an Engineering Material. Chapter 11, Forest Products Laboratory, General Technical Report FPL-GTR-190 (Madison, WI: Forest Products Laboratory, U.S. Department of Agriculture, Forest Service), pp. 11–20.
  • Pousette, A. and Ekevad, M. (2012) Shear resistance of glulam beams with cracks. In: International Council for Research and Innovation in Building and Construction: Working Commission W18 – Timber Structures, 27–30 August (Växjö).
  • Qiu, L. P. (2012) Fracture toughness of Northeast China larch. Key Engineering Materials, 517, 661–668.10.4028/www.scientific.net/KEM.517.661
  • Remmers, J. J. C., de Borst, R. and Needleman, A. (2008) The simulation of dynamic crack propagation using the cohesive segments method. Journal of the Mechanics and Physics of Solids, 56, 70–92.10.1016/j.jmps.2007.08.003
  • Schmidt, J. and Kaliske, M. (2009) Models for numerical failure analysis of wooden structures. Engineering Structures, 31, 571–579.10.1016/j.engstruct.2008.11.001
  • Silva, M. A. L., Morais, J. J. L., de Moura, M. F. S. F. and Lousada, J. L. (2007) Numerical analysis of the ENF test for mode II wood fracture characterization using the ELS test. Engineering Fracture Mechanics, 74, 2133–2147.10.1016/j.engfracmech.2006.10.012
  • Smith, I., Landis, E. and Gong, E. (2003) Fracture and Fatigue in Wood (John Wiley & Sons Ltd: Chichester).
  • Song, J.-H. (2006) A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 67, 868–893.10.1002/nme.1652
  • Stanzl-Tschegg, S. E., Tan, D. M. and Tschegg, T. K. (1995) New splitting method for wood fracture characterization. Wood Science and Technology, 29, 31–50.
  • Yoshihara, H. and Nobusue, K. (2008) Mode I and mode II fracture toughness of densified Sitka spruce fabricated in an airtight atmosphere with high temperature steam. Holzforschung, 62, 82–85.10.1515/HF.2008.012
  • Zagari, G., Fortino, S. and Dill-Langer, G. (2009) FEM simulation of crack growth in Glulam by using a 3D orthotropic-viscoelastic model and cohesive elements. In 7th EUROMECH Solid Mechanics Conference, 7–11 September (Lisbon).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.