374
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Improvement of mechanical properties of thermally modified hardwood through melamine treatment

ORCID Icon, , &
Pages 262-270 | Received 15 Feb 2017, Accepted 27 Mar 2017, Published online: 20 Apr 2017

References

  • Akitsu, H., Norimoto, M., Morooka, T. and Rowell, R. M. (1993) Effect of humidity on vibrational properties of chemically modified wood. Wood and Fiber Science, 25, 250–260.
  • Alén, R., Kotilainen, R. and Zaman, A. (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Science and Technology, 36(2), 163–171. doi: 10.1007/s00226-001-0133-1
  • Behr, G., Mahnert, K.-C., Bollmus, S. and Militz, H. (2014) Improving dimensional stability of thermally treated wood by secondary modification – potential and limitations. Presented at the International Research Group on Wood Protection, St. George, Utah, USA.
  • Bollmus, S. (2010) Biologische und technologische Eigenschaften von Buchenholz nach einer Modifizierung mit 1,2-dimethylol-4,5-dihydroxyethylenurea (DMDHEU) (Dissertation). Georg-August-Universität, Göttingen.
  • Boonstra, M. J., Van Acker, J., Tjeerdsma, B. F. and Kegel, E. V. (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, 64(7), 679–690. doi: 10.1051/forest:2007048
  • Deka, M., Gindl, W., Wimmer, R. and Christian, H. (2007) Chemical modification of Norway spruce (Picea abies (L) Karst) wood with melamine formaldehyde resin. Indian Journal of Chemical Technology, 14(2), 134–138.
  • Deka, M. and Saikia, C. N. (2000) Chemical modification of wood with thermosetting resin: Effect on dimensional stability and strength property. Bioresource Technology, 73(2), 179–181. doi: 10.1016/S0960-8524(99)00167-4
  • DIN 52 186 (1978) Testing of wood; bending test.
  • EN 1534 (2000) Wood and parquet flooring – Determination of resistance to indentation (Brinell) – test method.
  • Epmeier, H., Johansson, M., Kliger, R. and Westin, M. (2007) Bending creep performance of modified timber. Holz Als Roh-Und Werkstoff, 65, 343–351. doi: 10.1007/s00107-007-0189-1
  • Epmeier, H., Westin, M. and Rapp, A. (2004) Differently modified wood: Comparison of some selected properties. Scandinavian Journal of Forest Research, 19(sup5), 31–37. doi: 10.1080/02827580410017825
  • Esteves, B. M. and Pereira, H. M. (2009) Wood modification by heat treatment: A review. Bioresources, 4(1), 370–404.
  • Gindl, W., Müller, U. and Teischinger, A. (2003) Transverse compression strength and fracture of spruce wood modified by melamine-formaldehyde impregnation of cell walls. Wood and Fiber Science, 35(2), 239–246.
  • Hagstrand, P.-O. (1999) Mechanical analysis of melamine-formaldehyde composites (Dissertation). Chalmers University of Technology, Goteborg, Sweden.
  • Hansmann, C., Weichslberger, G. and Gindl, W. (2005) A two-step modification treatment of solid wood by bulk modification and surface treatment. Wood Science and Technology, 39(6), 502–511. doi: 10.1007/s00226-005-0002-4
  • Hill, C. A. S. (2006) Wood Modification (West Sussex: John Wiley and Sons Ltd).
  • Hosseinpourpia, R., Adamopoulos, S. and Mai, C. (2016) Dynamic vapour sorption of wood and holocellulose modified with thermosetting resins. Wood Science and Technology, 50(1), 165–178. doi: 10.1007/s00226-015-0765-1
  • Inoue, M., Ogata, S., Nishikawa, M., Otsuka, Y., Kawai, S. and Norimoto, M. (1993) Dimensional stability, mechanical properties, and color changes of a low-molecular-weight melamine formaldehyde resins impregnated wood. Mokuzai Gakkaishi, 39(2), 181–189.
  • Kielmann, B. C., Militz, H. and Mai, C. (2016) The effect of combined melamine-resin-colouring-agent modification on water related properties of beech wood. Wood Research, 61(1), 1–12.
  • Kielmann, B. C., Militz, H., Mai, C. and Adamopoulos, S. (2013) Strength changes in ash, beech and maple wood modified with a n-methylol melamine compound and a metal-complex dye. Wood Research, 58(3), 343–350.
  • Kim, G. H., Yun, K. E., and Kim, J. J. (1998) Effect of heat treatment on the decay resistance and the bending properties of radiata pine sapwood. Material Und Organismen, 32(2), 101–108.
  • Kollmann, F. (1951) Technologie des Holzes und der Holzwerkstoffe - Teil 2 (Berlin: Springer Verlag).
  • Konietschke, F. (2015) Multiple comparisons and simultaneous confidence intervals. Available at: https://cran.r-project.org/web/packages/nparcomp/nparcomp.pdf
  • Lahtela, V. and Kärki, T. (2016) Effects of impregnation and heat treatment on the physical and mechanical properties of Scots pine (Pinus sylvestris) wood. Wood Material Science & Engineering, 11(4), 217–227. doi: 10.1080/17480272.2014.971428
  • Leitch, C. E. (2016) Einfluss von ausgewählten Modifizierungssystemen auf elasto-mechanische Eigenschaften von Holz (Master Thesis). Georg-August-Universität, Göttingen.
  • Lukowsky, D. (1999) Holzschutz mit Melaminharzen (Dissertation) Universität Hamburg.
  • Lukowsky, D. (2002) Influence of the formaldehyde content of waterbased melamine formaldehyde resins on physical properties of Scots pine impregnated therewith. Holz Als Roh- und Werkstoff, 60(5), 349–355. doi: 10.1007/s00107-002-0324-y
  • Mahnert, K.-C. (2013) Entwicklung eines nichttragenden Bodenbelages für den Schiffbau auf Basis ausgewählter Verfahren der Holzmodifizierung (Dissertation). Georg-August-Universität, Göttingen.
  • Mahnert, K.-C., Adamopoulos, S., Koch, G. and Militz, H. (2013) Topochemistry of heat-treated and N-methylol melamine-modified wood of koto (Pterygota macrocarpa K. Schum.) and limba (Terminalia superba Engl. et. Diels). Holzforschung, 67(2), 137–146. doi: 10.1515/hf-2012-0017
  • Militz, H. (2015) Wood Modification in Europe in the year 2015: A success story? In 8th European Conference on Wood Modification. Presented at the European Conference on Wood Modification, Helsinki, Finland.
  • Militz, H. and Altgen, M. (2014) Processes and properties of thermally modified wood manufactured in Europe. In Deterioration and Protection of Sustainable Biomaterials, 1158, 269–285. doi: 10.1021/bk-2014-1158.ch016
  • Miroy, F., Eymard, P. and Pizzi, A. (1995) Wood hardening by methoxymethyl melamine. Holz als Roh- und Werkstoff, 53(4), 276–276. doi: 10.1007/s001070050089
  • Pittman, C. U., Kim, M. G., Nichols, Darrel D., Wang, Lichang, Ahmed Kabir, F. R., Schultz, Tor P. and Ingram, Leonard L. (1994) Wood enhancement treatments I. Impregnation of southern yellow pine with melamine-formaldehyde and melamine-ammeline-formaldehyde resins. Journal of Wood Chemistry and Technology, 14(4), 577–603. doi: 10.1080/02773819408003114
  • R Development Core Team (2011) R: A language and environment for statistical computing. Available at: http://www.R-project.org/.
  • Rapp, A. (1999) Physikalische und biologische Vergütung von Vollholz durch Imprägnierung mit wasserverdünnbaren Harzen (Dissertation). Universität Hamburg.
  • Rapp, A. and Peek, R.-D. (1995) New principles for the protection of wood: Impregnation with water-borne resins. In 26th Annual Meeting of IRG. Presented at the International Research Group on Wood Protection, Helsingør, Danmark, 9.
  • Rapp, A. O. and Peek, R.-D. (1996) Melamine resins as preservatives – results of biological testing. In 27th Annual Meeting of IRG. Presented at the International Research Group on Wood Protection, Guadeloupe, France, 5.
  • Rautkari, L., Honkanen, J., Hill, C. A. S., Ridley-Ellis, D. and Hughes, M. (2014) Mechanical and physical properties of thermally modified Scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180°C. European Journal of Wood and Wood Products, 72(1), 33–41. doi: 10.1007/s00107-013-0749-5
  • Sailer, M. (1995) Vergütung von Holz mit wasserlöslichen Harzen für die Verwendung im Außenbereich (Diplomarbeit). Universität Hamburg, Hamburg.
  • Stamm, A. J. (1964) Wood and Cellulose Science (New York: The Ronald Press Company).
  • Sun, B., Wang, X. and Liu, J. (2013) Changes in dimensional stability and mechanical properties of Eucalyptus pellita by melamine–urea–formaldehyde resin impregnation and heat treatment. European Journal of Wood and Wood Products, 71(5), 557–562. doi: 10.1007/s00107-013-0700-9
  • Sundqvist, B., Karlsson, O. and Westermark, U. (2006) Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Science and Technology, 40(7), 549–561. doi: 10.1007/s00226-006-0071-z
  • Tiemann, H. D. (1915) The effect of different methods of wood drying on the strength of wood. Lumber World Review, 28(7), 19–20.
  • Welzbacher, C. R. (2007) Verhalten von nach neuen thermischen Modifikationsverfahren behandelter Fichte und Kiefer unter besonderer Berücksichtigung der Dauerhaftigkeit gegenüber holzzerstörenden Mikroorganismen (Dissertation). Universität Hamburg.
  • Wetzig, M., Sieverts, T., Bergemann, H. and Niemz, P. (2012) Mechanical and physical properties of wood, heat-treated with the vacuum press dewatering method. Bauphysik, 34(1), 1–10. doi: 10.1002/bapi.201200001
  • Zaman, A., Alen, R. and Kotilainen, R. (2000) Thermal behavior of scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200–230 degrees C. Wood and Fiber Science, 32(2), 138–143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.