370
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Improvement of dimensional stability of wood by silica nanoparticles

ORCID Icon, &
Pages 48-58 | Received 13 Oct 2017, Accepted 23 Sep 2018, Published online: 08 Oct 2018

References

  • Attiaa, N. F, Moussa, M., Sheta, A. M. F., Taha, R. and Gamal, H. (2017) Synthesis of effective multifunctional textile based on silica nanoparticles. Progress in Organic Coatings, 106, 41–49. doi: 10.1016/j.porgcoat.2017.02.006
  • Broda, M. and Mazela, B. (2017) Application of methyltrimethoxysilane to increase dimensional stability of waterlogged wood. Journal of Cultural Heritage, 25, 149–156. doi: 10.1016/j.culher.2017.01.007
  • Cho, Y. K., Park, E. J. and Kim, Y. D. (2014) Removal of oil by gelation using hydrophobic silica nanoparticles. Journal of Industrial and Engineering Chemistry, 20(4), 1231–1235. doi: 10.1016/j.jiec.2013.08.005
  • De Vetter, L., Stevens, M. and Van Acker, J. (2009) Fungal decay resistance and durability of organosilicon-treated wood. International Biodeterioration & Biodegradation, 63(2), 130–134. doi: 10.1016/j.ibiod.2008.08.002
  • Donath, S., Militz, H. and Mai, C. (2004) Wood modification with alkoxysilanes. Wood Science and Technology, 38(7), 555–566. doi: 10.1007/s00226-004-0257-1
  • Dong, Y., Yan, Y., Zhang, S., Li, J. and Wang, J. (2015) Flammability and physical–mechanical properties assessment of wood treated with furfuryl alcohol and nano-SiO2. European Journal of Wood and Wood Products, 73(4), 457–464. doi: 10.1007/s00107-015-0896-y
  • Ebrahimi, F., Farazi, R., Karimi, E. Z. and Beygi, H. (2017) Dichlorodimethylsilane mediated one-step synthesis of hydrophilic and hydrophobic silica nanoparticles. Advanced Powder Technology, 28(3), 932–937. doi: 10.1016/j.apt.2016.12.022
  • Fan, Y., Gao, J. and Chen, Y. (2010) Colour responses of black locust (Robinia pseudoacacia L.) to solvent extraction and heat treatment. Wood Science and Technology, 44(4), 667–678. doi: 10.1007/s00226-009-0289-7
  • Fanglong, Z., Qun, X., Qianqian, F., Rangtong, L. and Kejing, L. (2016) Influence of nano-silica on flame resistance behavior of intumescent flame retardant cellulosic textiles: Remarkable synergistic effect? Surface and Coatings Technology, 294, 90–94. doi: 10.1016/j.surfcoat.2016.03.059
  • Giudice, C. A., Alfieri, P. V. and Canosa, G. (2013) Decay resistance and dimensional stability of araucaria angustifolia using siloxanes synthesized by sol–gel process. International Biodeterioration & Biodegradation, 83, 166–170. doi: 10.1016/j.ibiod.2013.05.015
  • Hood, M. A., Encinas, N., Vollmer, D., Graf, R., Landfester, K. and Muñoz-Espí, R. (2017) Controlling hydrophobicity of silica nanocapsules prepared from organosilanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532(5), 172–177. doi: 10.1016/j.colsurfa.2017.05.047
  • Ibrahim, I. A. M., Zikry, A. A. F. and Sharaf, M. A. (2010) Preparation of spherical silica nanoparticles: Stober silica. Journal of American Science, 6(11), 985–989.
  • Kumar, A., Ryparová, P., Škapin, A. S., Humar, M., Pavlič, M., Tywoniak, J., Hajek, P., Žigon, J. and Petrič, M. (2016) Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds. Cellulose, 23(5), 3249–3263. doi: 10.1007/s10570-016-1009-8
  • Lee, D. W. and Yoo, B. R. (2016) Advanced silica/polymer composites: Materials and applications. Journal of Industrial and Engineering Chemistry, 38, 1–12. doi: 10.1016/j.jiec.2016.04.016
  • Mahltig, B., Swaboda, C., Roessler, A. and Böttcher, H. (2008) Functionalising wood by nanosol application. Journal of Materials Chemistry, 27(18), 3180–3192. doi: 10.1039/b718903f
  • Mai, C. and Militz, H. (2004a) Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: A review. Wood Science and Technology, 37(5), 339–348. doi: 10.1007/s00226-003-0205-5
  • Mai, C. and Militz, H. (2004b) Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds – A review. Wood Science and Technology, 37, 453–461. doi: 10.1007/s00226-004-0225-9
  • Neinhuis, C. and Barthlott, W. (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79, 667–677. doi: 10.1006/anbo.1997.0400
  • Niemz, P., Mannes, D., Herbers, Y. and Koch, W. (2010) Untersuchungen zum Verhalten von mit Nanopartikeln imprägniertem Holz bei Freibewitterung. Bauphysik, 32(4), 226–232. doi: 10.1002/bapi.201010026
  • Ogiso, K. and Saka, S. (1993) Wood–inorganic composites prepared by sol-gel process. 2. Effects of ultrasonic treatments on preparation of wood–inorganic composites. Mokuzai Gakkaishi, 39, 301–307.
  • Panov, D. and Terziev, N. (2009) Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. International Biodeterioration & Biodegradation, 63, 456–461. doi: 10.1016/j.ibiod.2008.12.003
  • Rassam, G., Abdib, Y. and Abdia, A. (2012) Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. Journal of Experimental Nanoscience, 7(4), 468–476 doi: 10.1080/17458080.2010.538086
  • Sahin, H. T. and Mantanis, G. I. (2011) Nano-based surface treatm effects on swelling, water sorption and hardness of wood. Maderas. Ciencia y tecnología, 13(1), 41–48. doi: 10.4067/S0718-221X2011000100004
  • Saka, S., Miyafuji, H. and Tanno, F. (2001) Wood-inorganic composites prepared by the sol-gel process. Journal of Sol-Gel Science and Technology, 20, 213–217. doi: 10.1023/A:1017330925894
  • Saka, S., Sasaki, M. and Tanahashi, M. (1992) Wood–inorganic composites prepared by sol-gel processing. 1. Wood–inorganic composites with porous structure. Mokuzai Gakkaishi, 38, 1043–1049
  • Saka, S. and Ueno, T. (1997) Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Science and Technology, 31, 457–466.
  • Shabir Mahr, M., Hübert, T., Schartel, B., Bahr, H., Sabel, M. and Militz, H. (2012) Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2-wood composites. Journal of Sol-Gel Science and Technology, 64(2), 452–464. doi: 10.1007/s10971-012-2877-5
  • Skaar, C. (1988a) Moisture content of wood in use. In T. E. Timell (ed.) Wood-Water Relations (Berlin: Springer-Verlag), pp. 32–35.
  • Skaar, C. (1988b) Hygroexpansion in wood. In T. E. Timell (ed.) Wood-Water Relations (Berlin: Springer-Verlag), pp. 122–176.
  • Terziev, N., Panov, D., Temiz, A., Palanti, S., Feci, E. and Daniel, G. (2009) Laboratory and above ground exposure efficacy of silicon-boron treatments. IRG/WP 09-30510.
  • Torun, I. and Onses, M. S. (2017) Robust superhydrophobicity on paper: Protection of spray-coated nanoparticles against mechanical wear by the microstructure of paper. Surface and Coatings Technology, 319, 301–308. doi: 10.1016/j.surfcoat.2017.04.009
  • Wang, S., Mahlberg, R., Jämsä, S., Nikkola, J., Mannila, J., Ritschkoff, A-C. and Peltonen, J. (2011). Surface properties and moisture behaviour of pine and heat-treated spruce modified with alkoxysilanes by sol–gel process. Progress in Organic Coatings, 71(3), 274–282. doi: 10.1016/j.porgcoat.2011.03.011
  • Wang, X., Chai, Y. and Liu, J. (2013) Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung, 67, 667–672. doi: 10.1515/hf-2012-0153
  • Xue, C-H., Jia, S-T., Zhang, J. and Tian, L-Q. (2009) Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films, 517(16), 4593–4598. doi: 10.1016/j.tsf.2009.03.185
  • Yang, G., Song, J. and Hou, X. (2018) Fabrication of highly hydrophobic two-component thermosetting polyurethane surfaces with silica nanoparticles. Applied Surface Science, 439, 772–779. doi: 10.1016/j.apsusc.2018.01.017
  • Yu, X., Sun, D. and Li, X. (2011) Preparation and characterization of urea-formaldehyde resin-sodium montmorillonite intercalation-modified poplar. Journal of Wood Science, 57(6), 501–506. doi: 10.1007/s10086-011-1203-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.