2,414
Views
9
CrossRef citations to date
0
Altmetric
Articles

The effects of joints on the moisture behaviour of rain exposed wood: a numerical study with experimental validation

&
Pages 1-11 | Received 13 Sep 2018, Accepted 24 Mar 2019, Published online: 02 Apr 2019

References

  • Angst, V. and Malo, K. A. (2010) Moisture induced stresses perpendicular to the grain in glulam: Review and evaluation of the relative importance of models and parameters. Holzforschung, 64(5), 609–617.
  • Brischke, C. and Thelandersson, S. (2014) Modelling the outdoor performance of wood products – A review on existing approaches. Construction and Building Materials, 66, 384–397.
  • Brischke, C., Bayerbach, R. and Otto Rapp, A. (2006) Decay-influencing factors: A basis for service life prediction of wood and wood-based products. Wood Material Science and Engineering, 1(3–4), 91–107.
  • Brischke, C., Meyer-Veltrup, L. and Bornemann, T. (2017) Moisture performance and durability of wooden façades and decking during six years of outdoor exposure. Journal of Building Engineering, 13, 207–215.
  • Comstock, G. and Côté, W. (1968) Factors affecting permeability and pit aspiration in coniferous sapwood. Wood Science and Technology, 2(4), 279–291.
  • De Meijer, M. and Militz, H. (2000) Moisture transport in coated wood. Part 1: Analysis of sorption rates and moisture content profiles in spruce during liquid water uptake. Holz als Roh-und Werkstoff, 58(5), 354–362.
  • Derbyshire, H. and Robson, D. J. (1999) Moisture conditions in coated exterior woodpart 4: Theoretical basis for observed behaviour. A computer modelling study. Holz als Roh- und Werkstoff, 57(2), 105–113.
  • Dvinskikh, S. V., Furó, I., Sandberg, D. and Söderström, O. (2011) Moisture content profiles and uptake kinetics in wood cladding materials evaluated by a portable nuclear magnetic resonance spectrometer. Wood Material Science & Engineering, 6(3), 119–127.
  • Fredriksson, M. and Lindgren, O. (2013) End grain water absorption and redistribution in slow-grown and fast-grown Norway spruce (Picea abies (L.) Karst.) heartwood and sapwood. Wood Material Science & Engineering, 8(4), 245–252.
  • Fredriksson, M. and Thygesen, L. G. (2017a) The states of water in Norway spruce (Picea abies (L.) Karst.) studied by low-field nuclear magnetic resonance (LFNMR) relaxometry: Assignment of free-water populations based on quantitative wood anatomy. Holzforschung, 71(1), 77–90.
  • Fredriksson, M. and Thygesen, L. G. (2017b) The states of water in Norway spruce (Picea abies (L.) Karst.) studied by low-field nuclear magnetic resonance (LFNMR) relaxometry: Assignment of free-water populations based on quantitative wood anatomy. Holzforschung, 71(1), 77–90.
  • Fredriksson, M., Wadsö, L. and Johansson, P. (2013) Methods for determination of duration of surface moisture and presence of water in gaps in wood joints. Wood Science and Technology, 47(5), 913–924.
  • Fredriksson, M., Wadsö, L., Johansson, P. and Ulvcrona, T. (2016) Microclimate and moisture content profile measurements in rain exposed Norway spruce (Picea abies (L.) Karst.) joints. Wood Material Science & Engineering, 11(4), 189–200.
  • Gaby, L. I. and Duff, J. E. (1978) Moisture content changes in wood deck and rail components. USDA Forest Service Research Paper SE (USA).
  • Groot, R. C. D. (1992) Test assemblies for monitoring decay in wood exposed above ground. International Biodeterioration & Biodegradation, 29(2), 151–175.
  • Hjort, S. (1996) Full-scale method for testing moisture conditions in painted wood paneling. Journal of Coatings Technology, 68(856), 31–39.
  • Isaksson, T. and Thelandersson, S. (2013) Experimental investigation on the effect of detail design on wood moisture content in outdoor above ground applications. Building and Environment, 59, 239–249.
  • Kang, W., Lee, Y. H., Chung, W. Y. and Xu, H. L. (2009) Parameter estimation of moisture diffusivity in wood by an inverse method. Journal of Wood Science, 55(2), 83–90.
  • Koponen, H. (1984) Dependences of moisture diffusion coefficients of wood and wooden panels on moisture content and wood properties. Paperi ja puu, 66(12), 740–745.
  • Koponen, H. (1985) Dependence of moisture transfer and diffusion coefficients on temperature. Paperi ja puu, 8, 428–439.
  • Kumaran, M. (1999) Moisture diffusivity of building materials from water absorption measurements. Journal of Thermal Envelope and Building Science, 22(4), 349–355.
  • Lindgren, O. (1991) Utilization of computer axial tomography and digital image processing for studies of moisture sorption into wood. Trtek Report, Stockholm, Sweden, 1991 (in Swedish).
  • Meyer, L., Brischke, C. and Preston, A. (2016) Testing the durability of timber above ground: A review on methodology. Wood Material Science & Engineering, 11(5), 283–304.
  • Meyer-Veltrup, L., Brischke, C., Niklewski, J. and Frühwald Hansson, E. (2018) Design and performance prediction of timber bridges based on a factorization approach. Wood Material Science & Engineering, 0(0), 1–7.
  • Niemz, P., Mannes, D., Herbers, Y. and Koch, W. (2010) Untersuchungen zum wasseraufnahmekoeffizienten von holz bei variation von holzart und flüssigkeit. Bauphysik, 32(3), 149–153.
  • Niklewski, J., Fredriksson, M. and Isaksson, T. (2016) Moisture content prediction of rain-exposed wood: Test and evaluation of a simple numerical model for durability applications. Building and Environment, 97, 126–136.
  • Niklewski, J., Isaksson, T., Frühwald Hansson, E. and Thelandersson, S. (2018) Moisture conditions of rain-exposed glue-laminated timber members: The effect of different detailing. Wood Material Science & Engineering, 13(3): 129–140.
  • Norberg, P. (1999) Monitoring wood moisture content using the wetcorr method. Part 1: Background and theoretical considerations. Holz als Roh- und Werkstoff, 57(6), 448–453.
  • Perre, P., Moser, M. and Martin, M. (1993) Advances in transport phenomena during convective drying with superheated steam and moist air. International Journal of Heat and Mass Transfer, 36(11), 2725–2746.
  • Rapp, A., Peek, R. D. and Sailer, M. (2000) Modelling the moisture induced risk of decay for treated and untreated wood above ground. Holzforschung, 54(2), 111–118.
  • Robbers, K., Fromm, J. and Melcher, E. (2018) Evaluation of pedestrian timber bridges in the city of hamburg with particular consideration of design detailing. Wood Material Science & Engineering, 0(0), 1–10.
  • Siau, J. F. and Avramidis, S. (1996) The surface emission coefficient of wood. Wood and Fiber Science, 28(2), 178–185.
  • Simpson, W. T. (1993) Determination and use of moisture diffusion coefficient to characterize drying of northern red oak (quercus rubra). Wood Science and Technology, 27(6), 409–420.
  • Skaar, C. (1964) Some factors involved in the electrical determination of moisture gradients in wood. Forest Products Journal, 14, 239–243.
  • Spolek, G. A. and Plumb, O. A. (1981) Capillary pressure in softwoods. Wood Science and Technology, 15(3), 189–199.
  • Stamm, A. (1964) Wood and Cellulose Science. American Association for the Advancement of Science (New York: Ronald Press).
  • Tremblay, C., Cloutier, A. and Fortin, Y. (2000) Experimental determination of the convective heat and mass transfer coefficients for wood drying. Wood Science and Technology, 34(3), 253–276.
  • Virta, J., Koponen, S. and Absetz, I. (2006) Modelling moisture distribution in wooden cladding board as a result of short-term single-sided water soaking. Building and Environment, 41(11), 1593–1599.
  • Wadsö, L. (1993) Surface mass transfer coefficients for wood. Drying Technology, 11(6), 1227–1249.
  • Zelinka, S. L., Wiedenhoeft, A. C., Glass, S. V. and Ruffinatto, F. (2015) Anatomically informed mesoscale electrical impedance spectroscopy in southern pine and the electric field distribution for pin-type electric moisture metres. Wood Material Science & Engineering, 10(2), 189–196.