1,065
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Moisture-induced stresses in large glulam beams. Case study: Vihantasalmi Bridge

, &
Pages 366-380 | Received 16 Mar 2019, Accepted 28 Jun 2019, Published online: 09 Jul 2019

References

  • Aasheim, E. (1996) Nordic timber bridge program – An overview. In Vijaya K. A. Gopu (ed.) Proceedings of the International Wood Engineering Conference, New Orleans, LA, USA, 21–28 October 1996.
  • Abaqus (2016) Abaqus user’s manual, Version 6.14-5, Dassault Systèmes, 2016.
  • Aicher, S. and Dill-Langer, G. (2005) Effect of lamination anisotropy and lay-up in glued-laminated timbers. Journal of Structural Engineering, 131(7), 1095–1103. doi: 10.1061/(ASCE)0733-9445(2005)131:7(1095)
  • Angst-Nicollier, V. (2012) Moisture induced stresses in glulam: Effect of cross section geometry and screw reinforcement. Doctoral theses at NTNU, 2012:139.
  • Ceccotti, A., Fragiacomo, M. and Giordano, S. (2006) Long-term and collapse tests on a timber-concrete composite beam with glued-in connection. Materials and Structures, 40(1), 15–25. doi: 10.1617/s11527-006-9094-z
  • CEN (2002) EN 1990: Eurocode 0: Basis of Structural Design (Brussels: European Committee for Standardization).
  • CEN (2003) EN 1991-2: Eurocode 1: Actions on Structures – Part 2: Traffic Loads on Bridges (Brussels: European Committee for Standardization).
  • CEN (2004) EN 1995-2: Eurocode 5: Design of Timber Structures – Part 2: Bridges (Brussels: European Committee for Standardization).
  • CEN (2013) EN 14080: Timber Structures. Glued Laminated Timber and Glued Solid Timber. Requirements (Brussels: European Committee for Standardization).
  • ECMWF (2017) ECMWF: ERA-interim. European Centre for Medium-Range Weather Forecasts. UK: ECMWF. Accessed 2 March 2017, available at: http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
  • Fortino, S., Genoese, A., Genoese, A., Nunes, L. and Palma, P. (2013a) Numerical modelling of the hygro-thermal response of timber bridges during their service life: A monitoring case-study. Construction and Building Materials, 47, 1225–1234. doi: 10.1016/j.conbuildmat.2013.06.009
  • Fortino, S., Genoese, A., Genoese, A. and Rautkari, L. (2013b) FEM simulation of the hygro-thermal behaviour of wood under surface densification at high temperature. Journal of Materials Science, 48(21), 7603–7612. doi: 10.1007/s10853-013-7577-1
  • Fortino, S., Hradil, P., Genoese, A., Genoese, A. and Pousette, A. (2019) Numerical hygro-thermal analysis of coated wooden bridge members exposed to Northern European climates. Construction and Building Materials, 208, 492–505. doi: 10.1016/j.conbuildmat.2019.03.012
  • Fortino, S., Hradil, P., Salminen, L. I. and De Magistris, F. (2015) A 3D micromechanical study of deformation curves and cell wall stresses in wood under transverse loading. Journal of Materials Science, 50(1), 482–492. doi: 10.1007/s10853-014-8608-2
  • Fortino, S., Mirianon, F. and Toratti, T. (2009) A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mechanics of Time-Dependent Materials, 13(4), 333–356. doi: 10.1007/s11043-009-9103-z
  • Fortino, S., Zagari, G., Mendicino, A. L. and Dill-Langer, G. (2012) A simple FEM simulation of mode I cohesive crack growth in glued laminated timber under short-term loading. Rakenteiden Mekaniikka (Journal of Structural Mechanics), 45(1), 1–20.
  • Fragiacomo, M., Fortino, S., Tononi, D., Usardi, I. and Toratti, T. (2011) Moisture-induced stresses perpendicular to grain in cross-sections of timber members exposed to different climates. Engineering Structures, 33, 3071–3078. doi: 10.1016/j.engstruct.2011.06.018
  • Frandsen, H. L. (2007) Selected constitutive models for simulating the hygromechanical response of wood. Dissertation no. 10. Dep. of Civil Engineering, Aalborg University. ISSN: 1901-7294.
  • Frandsen, H. L., Damkilde, L. and Svensson, S. (2007) A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood. Holzforschung, 61, 563–572. doi: 10.1515/HF.2007.085
  • Franke, B., Franke, S., Schiere, M. and Müller, A. (2018) Moisture content and moisture-induced stresses of large glulam members: Laboratory tests, in-situ measurements and modelling. Wood Material Science & Engineering, 14, 243–252. doi: 10.1080/17480272.2018.1551930
  • Frühwald, E., Serrano, E., Toratti, T., Emilsson, A. and Thelandersson, S. (2007) Design of Safe Timber Structures—How Can We Learn From Failures in Concrete, Steel and Timber? Report TVBK-3053 (Lund: Lund Institute of Technology).
  • Gereke, T. and Niemz, P. (2010) Moisture-induced stresses in spruce cross-laminates. Engineering Structures, 32, 600–606. doi: 10.1016/j.engstruct.2009.11.006
  • Gustafsson, A., Parikka, A., Ekevad, M., Hagman, O., Ourunranta, J., Saukko, O. and Pahkasalo, M. (2014) Cluster wooden bridges. Centria tutkimus ja kehitys – forskning och utveckling, 19. ISBN 978-952-6602-73-8, ISSN 2341-7846.
  • Hedlin, C. P. (1967) Sorption isotherms of twelve woods at subfreezing temperatures. Forest Products Journal, 17(12), 43–48.
  • Huc, S., Svensson, S. and Hozjan, T. (2018) Hygro-mechanical analysis of wood subjected to constant mechanical load and varying relative humidity. Holzforschung, 72(10), 863–870. doi: 10.1515/hf-2018-0035
  • Jaaranen, J. (2016) Analysis methods for short to medium span timber-concrete composite bridges. MSc Thesis, Aalto University, Finland.
  • Janssen, H., Blocken, B. and Carmeliet, J. (2007) Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. International Journal of Heat and Mass Transfer, 50, 1128–1140. doi: 10.1016/j.ijheatmasstransfer.2006.06.048
  • Jönsson, J. (2005) Moisture induced stresses in timber structures, Technical Report TVBK–1031, Dissertation, Division of Structural Engineering, Lund University of Technology.
  • Jutila, A. and Salokangas, L. (2000) Research on and development of wooden bridges in Finland. Structural Engineering International, 10, 182–185. doi: 10.2749/101686600780481455
  • Konopka, D. and Kaliske, M. (2018) Transient multi-Fickian hygro-mechanical analysis of wood. Computers & Structures, 197, 12–27. doi: 10.1016/j.compstruc.2017.11.012
  • Krabbenhøft, K. (2003) Moisture transport in wood. A study of physical–mathematical models and their numerical implementation. PhD Thesis, Department of Civil Engineering Technical University of Denmark.
  • Kuittinen, M., Ludvig, A. and Weiss, G. (eds.) (2013) Wood in Carbon Efficient Construction – Tools, Methods and Applications (Finland: Hämeen Kirjapaino Oy). Chapter 2.
  • Mackenzie-Helnwein, P. and Hanhijärvi, A. (2003) Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. II: Algorithmic aspects and practical application. Journal of Engineering Mechanics, 129(9), 1006–1016. doi: 10.1061/(ASCE)0733-9399(2003)129:9(1006)
  • Metelli, G., Preti, M. and Giuriani, E. (2016) On the delamination phenomenon in the repair of timber beams with steel plates. Construction and Building Materials, 102, 1018–1028. doi: 10.1016/j.conbuildmat.2015.09.038
  • Musci, A. (2016) Effects of moisture content on timber structural elements. Case-study: Vihantasalmi Bridge. MSc Thesis, University of Brescia.
  • Obataya, E. (2007) Characteristics of aged wood and Japanese traditional coating technology for wood protection. Actes de la journée d’étude Conserver aujourd’hui: les « vieillissements » du bois – Cité de la Musique, pp. 28–43.
  • Ormarsson, S. and Gíslason, ÓV (2016) Moisture-induced stresses in glulam frames. European Journal of Wood and Wood Products, 74(3), 307–318. doi: 10.1007/s00107-016-1006-5
  • Pečenko, R., Svensson, S. and Hozjan, T. (2015) Modelling heat and moisture transfer in timber exposed to fire. International Journal of Heat and Mass Transfer, 87, 598–605. doi: 10.1016/j.ijheatmasstransfer.2015.04.024
  • Pousette, A. and Fjellström, P. A. (2016) Experiences from timber bridge inspections in Sweden – Examples of influence of moisture. SP Technical Research Institute of Sweden, SP Rapport 2016:45, ISBN 978-91-88349-49-1.
  • Pousette, A., Malo, K., Thelandersson, S., Fortino, S., Salokangas, L. and Wacker, J. (2017) Final report and guidelines. SP Report 25. Research Institutes of Sweden RISE, Skellefteå, Sweden.
  • Rantakokko, T. and Salokangas, L. (2000) Design of the Vihantasalmi Bridge, Finland. Structural Engineering International, 10, 150–152. doi: 10.2749/101686600780481590
  • Salokangas, L. and Jutila, A. (2003) Vihantasalmen sillan seurantatutkimus [Follow-up report of the Vihantasalmi Bridge]. Technical report TKK-SRT-32, Tampere, Finland, 40 pp. (in Finnish).
  • Song, S., Chen, C., Zhu, S., Zhu, M., Dai, J., Ray, U., Li, Y., Kuang, Y., Li, Y., Quispe, N., Yao, Y., Gong, A., Leiste, U. H., Bruck, H. A., Zhu, J. Y., Vellore, A., Li, H., Minus, M. L., Jia, Z., Martini, A., Li, T. and Hu, L. (2018) Processing bulk natural wood into a high-performance structural material. Nature, 554, 224–228. doi: 10.1038/nature25476
  • Svensson, S. and Toratti, T. (2002) Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Science and Technology, 36(2), 145–156. doi: 10.1007/s00226-001-0130-4
  • Thelandersson, S. (2003) Introduction: Wood as construction material. In S. Thelandersson and H. J. Larsen (eds.), Timber Engineering (London: Wiley).
  • Toratti, T. (1992) Creep of timber beams in a variable environment. Technical Report no 31/TRT, Dissertation, Helsinki University of Technology.
  • Toratti, T. and Svensson, S. (2000) Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads. Wood Science and Technology, 34(4), 317–326. doi: 10.1007/s002260000059
  • Younsi, Y., Kocaefe, D., Poncsak, S. and Kocaefe, Y. (2007) Computational modelling of heat and mass transfer during the high-temperature heat treatment of wood. Applied Thermal Engineering, 27, 1424–1431. doi: 10.1016/j.applthermaleng.2006.10.025
  • Zhu, E. C., Zhou, H. Z., Fortino, S. and Toratti, T. (2010) Modelling the hygrothermal stress in curved glulam beams. The Journal of Strain Analysis for Engineering Design, 45(2), 129–140. doi: 10.1243/03093247JSA563

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.