247
Views
8
CrossRef citations to date
0
Altmetric
Articles

Ultrasound to determine physical-mechanical properties of Eucalyptus camaldulensis wood

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 407-413 | Received 10 Jun 2020, Accepted 27 Sep 2020, Published online: 13 Oct 2020

References

  • American Society for Testing and Materials – ASTM (2014) ASTM D 143: Standard methods of testing small clear specimens of timber. Philadelphia.
  • Associação Brasileira de Normas Técnicas – ABNT (1997) NBR 7190: Projeto de estruturas de madeira. Rio de Janeiro.
  • Baar, J., Tippner, J. and Rademacher, P. (2015) Prediction of mechanical properties – modulus of rupture and modulus of elasticity – of five tropical species by non-destructive methods. Maderas. Ciencia y Tecnología, 17(2), 239–252. doi:https://doi.org/10.4067/s0718-221×2015005000023
  • Benin, C. C., Watzlawick, L. F. and Hillig, E. (2017) Physical and mechanical properties of Eucalyptus benthamii wood under the effect of the planting spacing. Ciência Florestal, 27(4), 1375–1384. doi:https://doi.org/10.5902/1980509830219
  • Brashaw, B. K., Buccur, V., Divos, F., Gonçalves, R., Lu, J., Meder, R., Pellerin, R. F., Potter, S., Ross, R. J., Wang, X. and Yin, Y. (2009) Nondestructive testing and evaluation of wood: A worldwide research update. Forest Products Journal, 59(3), 7–14.
  • Brazilian Tree Industry – BTI (2018) Report 2017. Accessed 29 May 2020, available at: https://www.iba.org/datafiles/publicacoes/pdf/iba-relatorioanual2017.pdf
  • Bucur, V. (2006) Techniques for high resolution imaging of wood structure: A review. Measurement Science and Technology, 14(12), R91–R98.
  • Calegari, L., Stangerlin, D. M., Santini, E. J., Haselein, C. R., Longhi, S. J., Carmo, P. I. O., Silva Filho, L. C. P. and Gatto, D. A. (2010) Monitoramento do teor de umidade de madeiras de Pinus elliottii Engelm. e Eucalyptus grandis W. Hill ex Maiden, sob diferentes temperaturas de secagem, através do ultrassom. Ciência Florestal, 17(4), 399–408. doi:https://doi.org/10.5902/198050981971
  • Carrasco, A. V. M. and Azevedo Jr, A. P. (2003) Non destructive evaluation of wood mechanical properties through ultrasonic sound waves – physical foundations and experimental results. Cerne, 9(2), 178–191.
  • Chauhan, S. and Sethy, A. (2016) Differences in dynamic modulus of elasticity determined by three vibration methods and their relationship with static modulus of elasticity. Maderas. Ciencia y Tecnología, 18(2), 373–382. doi:https://doi.org/10.4067/s0718-221×2016005000034
  • Comissão Panamericana de Normas Técnicas – COPANT (1972) COPANT 458: Seleção de amostras. La paz.
  • Dundar, T., Wang, X. and Ross, R. J. (2013) Prediction of transverse shrinkages of young-growth Sitka spruce (Picea sitchensis) and western hemlock (Tsuga heterophylla) with ultrasonic measurements. Wood Material Science and Engineering, 8(4), 234–241. doi:https://doi.org/10.1080/17480272.2013.834968
  • Glass, S. V. and Zelinka, S. L. (2010) Moisture relations and physical properties of wood. In: R. J. Ross (ed.) Wood Handbook: Wood as an Engineering Material (Madison, WI: Forest Products Laboratory, U.S. Department of Agriculture, Forest Service), pp. 4-1–4-19. 509 p.
  • Gonçalves, R., Trinca, A. J. and Cerri, D. G. P. (2014) Comparison of elastic constants of wood determined by ultrasonic wave propagation and static compression testing. Wood and Fiber Science, 43(1), 64–75.
  • Hein, P. R. G., Silva, J. R. M. and Brancheriau, L. (2013) Correlations among microfibril angle, density, modulus of elasticity, modulus of rupture and shrinkage in 6-year-old Eucalyptus urophylla × Eucalyptus grandis. Maderas. Ciencia y tecnología, 15(2), 171–182. Epub 11 de abril de 2013. doi:https://doi.org/10.4067/S0718-221X2013005000014
  • Ilic, J. (2003) Dynamic MOE of 55 species using small wood beams. Holz Als Roh- Und Werkstoff, 61(3), 167–172. doi:https://doi.org/10.1007/s00107-003-0367-8
  • Izekor, D. N., Fuwape, J. A. and Oluyege, A. O. (2010) Effects of density on variations in the mechanical properties of plantation grown Tectona grandis wood. Archives of Applied Science Research, 2, 113–120.
  • Karlinasari, L., Surjokusumo, S., Hadi, Y. S. and Nugroho, N. (2005) Non-destructive testing on six tropical woods using ultrasonic method. In: Dwianto W (ed) Towards ecology and economy harmonization of tropical forest resources. Proceedings of the 6th international wood science symposium. Bali, Indonesia.
  • Karlinasari, L., Wabyuna, M. E. and Nugroho, N. (2008) Non-destructive ultrasonic testing method for determining bending strength properties of Gmelina wood (Gmelina arborea). Journal of Tropical Forest Science, 20(2), 99–104.
  • Oliveira, F. G. R., Campos, J. A. O. and Sales, A. (2002) Ultrasonic measurements in Brazilian hardwood. Materials Research, 5(1), 51–55.
  • Oliveira, F. G. R., Candian, M., Luchette, F. F., Salgon, J. L. and Sales, A. (2005) Moisture content effect on ultrasonic velocity in Goupia glabra. Materials Research, 8(1), 11–14. doi:https://doi.org/10.1590/S1516-14392005000100004
  • Ravenshorst, G. J. P., Van De Kuilen, J. W. G., Brunetti, M. and Crivellaro, A. (2008) Species independent machine stress grading of hardwoods. In: Proceedings 10th world conference on timber engineering WCTE. Miyazaki, Japan.
  • Sargent, R. (2019) Evaluating dimensional stability in solid wood: a review of current practice. Journal of Wood Science, 65, 1–11. doi:https://doi.org/10.1186/s10086-019-1817-1
  • Senalik, C. A., Schueneman, G. and Ross, R. J. (2015) Ultrasonic-based nondestructive evaluation methods for wood. In R. J. Ross (ed.) Nondestructive Evaluation of Wood. 2nd Edition. General Technical Report FPL-GTR-238 (Madison: USDA/Forest Service), pp. 21–51.
  • Stangerlin, D. M., Calegari, L., Santini, E. J., Domingues, J. M. X., Gatto, D. A. and Melo, R. R. (2008b) Determinação do módulo de elasticidade em madeiras por meio de métodos destrutivo e não destrutivo. Revista Brasileira de Ciências Agrárias – Brazilian Journal of Agricultural Sciences, 3(2), 145–150. doi:https://doi.org/10.5039/agraria.v3i2a284
  • Stangerlin, D. M., Domingues, J. M. X., Santini, E. J., Calegari, L., Melo, R. R., Gatto, D. A. and Haselein, C. R. (2008a) Obtenção do modulo de elasticidade em madeiras de Patagonula americana e Araucaria angustifolia por meio do método ultrassonoro. Revista Científica Eletrônica de Engenharia Florestal, 11(1), 1–15.
  • Stangerlin, D. M., Gonçalves, J. C., Gonçalves, R., Santini, E. J., Calegari, L., Melo, R. R. and Gatto, D. A. (2010) Evaluation of waves generated for two models of transducers for determining the dynamic modulus of elasticity. Floresta, 40(4), 691–700. doi:https://doi.org/10.5380/rf.v40i4.20320
  • Targa, L. A., Ballarin, A. W. and Biaggioni, M. A. M. (2005) Avaliação do módulo de elasticidade da Madeira com uso de método não-destrutivo de vibração transversal. Engenharia Agrícola, 25(2), 291–299. doi:https://doi.org/10.1590/S0100-69162005000200001
  • Teles, R. F., Del Menezzi, C. S., Souza, F. and Souza, M. R. (2011) Non-destructive evaluation of a tropical hardwood: Interrelationship between methods and physical-acoustical variables. Revista Ciência da Madeira – RCM, 2, 1–14.
  • Yang, J. L. and Evans, R. (2003) Prediction of MOE of eucalypt wood from microfibril angle and density. Holz als Roh und Werkstoff, 61, 449–452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.