251
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Furfurylation of tropical wood species with and without silver nanoparticles: Part I: Analysis with confocal laser scanning microscopy and FTIR spectroscopy

, , &
Pages 410-419 | Received 20 Nov 2020, Accepted 02 Feb 2021, Published online: 18 Feb 2021

References

  • Adebawo, F. G., Naithani, V., Sadeghifar, H., Tilotta, D., Lucia, L. A., Jameel, H. and Ogunsanwo, O. Y. (2016) Morphological and interfacial properties of chemically-modified tropical hardwood. RSC Advances, 6(8), 6571–6576.
  • Ahmad, E. E. M., Luyt, A. S. and Djoković, V. (2013) Thermal and dynamic mechanical properties of bio-based poly(furfuryl alcohol)/sisal whiskers nanocomposites. Polymer Bulletin, 70(4), 1265–1276.
  • Ahmed, S. A. and Chun, S. K. (2009) Observation of liquid permeability related to anatomical characteristics in Samanea saman. Turkish Journal of Agriculture and Forestry, 33(2), 155–163.
  • Barsberg, S. T. and Thygesen, L. G. (2017) A combined theoretical and FT-IR spectroscopy study of a hybrid poly(furfuryl alcohol) – lignin material: Basic chemistry of a sustainable wood protection method. Chemistry Select, 2, 10818–10827.
  • Berrocal, A., Moya, R., Rodriguez-Solis, M., Starbird, R. and Muñoz, F. (2016) Surface chemical and color characterization of juvenile Tectona grandis wood subjected to steam-drying treatments. Surface Review and Letters, 23(1). doi:10.1142/S0218625X15500912.
  • Bertarione, S., Bonino, F., Cesano, F., Damin, A., Scarano, D. and Zecchina, A. (2008) Furfuryl alcohol polymerization in H−Y confined spaces: reaction mechanism and structure of carbocationic intermediates. The Journal of Physical Chemistry B, 112(9), 2580–2589.
  • Bose, S. K., Francis, R. C., Govender, M., Bush, T. and Spark, A. (2009) Lignin content versus syringyl to guaiacyl ratio amongst poplars. Bioresource Technology, 100(4), 1628–1633.
  • Can, A., Palanti, S., Sivrikaya, H., Hazer, B. and Stefani, F. (2019) Physical, biological and chemical characterisation of wood treated with silver nanoparticles. Cellulose, 26(8), 5075–5084.
  • Can, A., Sivrikaya, H. and Hazer, B. (2018) Fungal inhibition and chemical characterization of wood treated with novel polystyrene-soybean oil copolymer containing silver nanoparticles. International Biodeterioration & Biodegradation, 133, 210–215.
  • Choura, M., Belgacem, N. M. and Gandini, A. (1996) Acid-catalyzed polycondensation of furfuryl alcohol: Mechanisms of chromophore formation and cross-linking. Macromolecules, 29, 3839–3850.
  • Donaldson, L. (2013) Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. IAWA Journal, 34(1), 3–19.
  • Donaldson, L. (2020) Autofluorescence in plants. Molecules, 25(10), 2393.
  • Dong, Y., Yan, Y., Zhang, S. and Li, J. (2014) Wood/polymer nanocomposites prepared by impregnation with furfuryl alcohol and nano-SiO2. BioResources, 9(4), 6028–6040.
  • Esteves, B., Nunes, L. and Pereira, H. (2011) Properties of furfurylated wood (Pinus pinaster). European Journal of Wood and Wood Products, 69(4), 521–525.
  • Gaitán-Alvarez, J., Berrocal, A., Mantanis, G. I., Moya, R. and Araya, F. (2020) Acetylation of tropical hardwood species from forest plantations in Costa Rica: an FTIR spectroscopic analysis. Journal of Wood Science, 66(1), 49.
  • Gao, X., Dong, Y., Wang, K., Chen, Z., Yan, Y., Li, J. and Zhang, S. (2017) Improving dimensional and thermal stability of poplar wood via aluminum-based sol-gel and furfurylation combination treatment. BioResources, 12(2), 3277–3288.
  • Gérardin, P. (2016) New alternatives for wood preservation based on thermal and chemical modification of wood – a review. Annals of Forest Science, 73(3), 559–570.
  • Hadi, Y. S., Herliyana, E. N., Mulyosari, D., Abdillah, I. B., Pari, R. and Hiziroglu, S. (2020) Termite resistance of furfuryl alcohol and imidacloprid treated fast-growing tropical wood species as function of field test. Applied Sciences, 10(17), 6101.
  • Higuchi, T. (1997) Biosynthesis of Wood Components (Berlin: Springer), 93, pp. 262.
  • Hill, C. A. S. (2006) Wood Modification – Chemical, Thermal and Other Processes, Wiley Series in Renewable Resources, Ed (Chichester: J. Wiley and Sons), pp. 260.
  • Johnston, J. H. and Nilsson, T. (2012) Nanogold and nanosilver composites with lignin-containing cellulose fibres. Journal of Materials Science, 47(3), 1103–1112.
  • Kong, L., Guan, H. and Wang, X. (2018) In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustainable Chemistry & Engineering, 6(3), 3349–3357.
  • Lande, S., Eikenes, M., Westin, M. and Schneider, M. H. (2008b) Furfurylation of wood: Chemistry, properties, and commercialization. ACS Symposium Series, 982, 337–355.
  • Lande, S., Westin, M. and Schneider, M. (2004) Properties of furfurylated wood. Scandinavian Journal of Forest Research, 19(5), 22–30.
  • Lande, S., Westin, M. and Schneider, M. (2008a) Development of modified wood products based on furan chemistry. Molecular Crystals and Liquid Crystals, 484(1), 367–378.
  • Li, W., Ren, D., Zhang, X., Wang, H. and Yu, Y. (2016) The furfurylation of wood: A nanomechanical study of modified wood cells. BioResources, 11(2), 3614–3625.
  • Li, W., Wang, H., Ren, D., Yu, Y. and Yu, Y. (2015) Wood modification with furfuryl alcohol catalysed by a new composite acidic catalyst. Wood Science and Technology, 49(4), 845–856.
  • Liu, M., Guo, F., Wang, H., Ren, W., Cao, M. and Yu, Y. (2020) Highly stable wood material with low resin consumption via vapor phase furfurylation in cell walls. ACS Sustainable Chemistry & Engineering, 8, 13924–13933.
  • Lykidis, C., Bak, M., Mantanis, G. and Németh, R. (2016) Biological resistance of pine wood treated with nano-sized zinc oxide and zinc borate against brown-rot fungi. European Journal of Wood and Wood Products, 74(6), 909–911.
  • Lykidis, C., Mantanis, G., Adamopoulos, S., Kalafata, K. and Arabatzis, I. (2013) Effects of nano-sized zinc oxide and zinc borate impregnation on brown-rot resistance of black pine (Pinus nigra L.) wood. Wood Material Science and Engineering, 8(4), 242–244.
  • Mantanis, G. I. (2017) Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources, 12(2), 4478–4489.
  • Mantanis, G., Terzi, E., Kartal, S. N. and Papadopoulos, A. (2014) Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper- based nanocompounds. International Biodeterioration and Biodegradation, 90, 140–144.
  • Mie, R., Samsudin, M. W. and Din, L. B. (2013) A review on biosynthesis of nanoparticles using plant extract: An emerging green nanotechnology. Advanced Materials Research, 667, 251–254.
  • Militz, H. (2020) Wood modification research in Europe. Holzforschung, 74(4), 333.
  • Moya, R., Berrocal, A., Rodriguez-Zuñiga, A., Vega-Baudrit, J. and Noguera, S. C. (2014a) Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood and Fiber Science, 46(4), 527–538.
  • Moya, R., Berrocal, A., Rodriguez-Zuñiga, A., Vega-Baudrit, J. and Noguera, S. C. (2014b) Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood and Fiber Science, 46(4), 527–538.
  • Moya, R., Gaitan-Alvarez, J., Berrocal, A. and Araya, F. (2020a) Effect of CaCO3 in the wood properties of tropical hardwood species from fast-grown plantations in Costa Rica. BioResources, 15(3), 4802–4822.
  • Moya, R., Gaitan-Alvarez, J., Berrocal, A. and Araya, F. (2020b) Effect of CaCO3 in the wood properties of tropical hardwood species from fast-grown plantations in Costa Rica. Fresenius Environmental Bulletin, 29(10), 9184–9194.
  • Moya, M., Leandro-Zúñiga, L. and Murillo-Gamboa, O. (2009) Wood characteristics of Terminalia amazonia, Vochysia guatemalensis and Hyeronima alchorneoides planted in Costa Rica. Revista Bosque, 30(2), 78–87.
  • Moya, R., Rodriguez-Zuñiga, A., Berrocal, A. and Vega-Baudrit, J. (2017) Effect of silver nanoparticles synthesized with NPsAg-ethylene glycol on brown decay and white decay fungi of nine tropical woods. Journal of Nanoscience & Nanotechnology, 17(8), 5233–5240.
  • Moya, R., Rodríguez-Zúñiga, A., Vega-Baudrit, J. and Álvarez, V. (2015) Effects of adding nano-clay (montmorillonite) on performance of polyvinyl acetate (PVAc) and urea-formaldehyde (UF) adhesives in Carapa guianensis, a tropical species. International Journal of Adhesion and Adhesives, 59, 62–70.
  • Moya, R., Tenorio, C., Salas, J., Berrocal, A. and Muñoz, F. (2019) Tecnología de la madera de plantaciones forestales. Editorial Tecnológica de Costa Rica. 1st ed. (Cartago: Editorial Universidad de Costa Rica).
  • Nordstierna, L., Lande, S., Westin, M., Karlsson, O. and Furó, I. (2008) Towards novel wood-based materials: Chemical bonds between lignin-like model molecules and poly(furfuryl alcohol) studied by NMR. Holzforschung, 62(6), 709–713.
  • Oishi, S. S., Rezende, M. C., Origo, F. D., Damião, A. J. and Botelho, E. C. (2012) Viscosity, pH, and moisture effect in the porosity of poly(furfuryl alcohol). Journal of Applied Polymer Science, 128(3), 1680–1683.
  • Papadopoulos, A. N., Bikiaris, D. N., Mitropoulos, A. C. and Kyzas, G. Z. (2019) Nanomaterials and chemical modifications for enhanced key wood properties: A review. Nanomaterials, 9(4), 607.
  • Rahman, M. R., Lai, J. C. H. and Hamdan, S. (2018) Studies on the physical, mechanical, thermal and morphological properties of impregnated furfuryl alcohol-co-glycidyl methacrylate/nanoclay wood polymer nanocomposites. In Wood Polymer Nanocomposites. Engineering Materials (Cham: Springer), pp. 257–274. doi:10.1007/978-3-319-65735-6_14.
  • Rowell, R. M. (2012) Handbook of Wood Chemistry and Wood Composites. 2nd ed. (Boca Raton, FL: CRC Press, Taylor and Francis Group), pp. 703.
  • Rowell, R. M., Ibach, R. E., McSweeny, J. and Nilsson, T. (2009) Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood. Wood Material Science and Engineering, 1–2, 14–22.
  • Saka, S. (2000) Chemical composition and distribution. In D. N. S. Hon and N. Shiraishi (eds.) Wood and Cellulosic Chemistry, Revised, and Expanded (London: CRC Press), pp. 51–81.
  • Sandberg, D., Kutnar, A. and Mantanis, G. (2017) Wood modification technologies – a review. iForest – Biogeosciences and Forestry, 10(6), 895–908.
  • Sangregorio, A., Muralidhara, A., Guigo, N., Thygesen, L. G., Marlair, G., Angelici, C., de Jong, E. and Sbirrazzuoli, N. (2020) Humin based resin for wood modification and property improvement. Green Chemistry. doi:10.1039/c9gc03620b.
  • Schneider, M. H. (1995) New cell wall and cell lumen wood polymer composites. Wood Science and Technology, 29, 121–127.
  • Scott, N. and Chen, H. (2013) Nanoscale science and engineering for agriculture and food systems. Industrial Biotechnology, 9(1), 17–18.
  • Simon, C., Lion, C., Biot, C., Gierlinger, N. and Hawkins, S. (2018) Lignification and advances in lignin imaging in plant cell walls. In Annual Plant Reviews Online (NJ: Wiley), pp. 909–940.
  • Taghiyari, H. R., Bayani, S., Militz, H. and Papadopoulos, A. N. (2020b) Heat treatment of pine wood: possible effect of impregnation with silver nanosuspension. Forests, 11, 466. doi:10.3390/f11040466.
  • Taghiyari, H. R., Tajvidi, M., Taghiyari, R., Mantanis, G. I., Esmailpour, A. and Hosseinpourpia, R. (2020a) Chapter 19: Nanotechnology for wood quality improvement and protection. In Nanomaterials for Agriculture and Forestry Applications, pp. 469–489. doi:10.1016/B978-0-12-817852-2.00019-6.
  • Tarmian, A., Sepehr, A. and Gholamiyan, H. (2012) The use of nano-silver particles to determine the role of the reverse temperature gradient in moisture flow in wood during low-intensity conventive drying. Special Topics and Reviews in Porous Media – An International Journal, 3(2), 149–156.
  • Tarmian, A., Zahedi Tajrishi, I., Oladi, R. and Efhamisisi, D. (2020) Treatability of wood for pressure treatment processes: A literature review. European Journal of Wood and Wood Products, 78, 635–660.
  • Thygesen, L. G., Barsberg, S. and Venås, T. M. (2010) The fluorescence characteristics of furfurylated wood studied by fluorescence spectroscopy and confocal laser scanning microscopy. Wood Science and Technology, 44(1), 51–65.
  • Thygesen, L. G., Ehmcke, G., Barsberg, S. and Pilgård, A. (2020) Furfurylation result of Radiata pine depends on the solvent. Wood Science and Technology. doi:10.1007/s00226-020-01194-1.
  • Venås, T. M. and Rinnan, Å (2008) Determination of weight percent gain in solid wood modified with in situ cured furfuryl alcohol by near-infrared reflectance spectroscopy. Chemometrics and Intelligent Laboratory Systems, 92(2), 125–130.
  • Westin, M. (1996) Development and evaluation of new alternative wood preservation treatments. Final report to The Swedish Council for Forestry and Agri. Res. (SJFR) (in Swedish with an English summary), pp. 1–25.
  • Westin, M., Nilsson, T. and Hadi, Y. S. (1998) Field performance of furfuryl alcohol treated wood. In Proceedings of the 4th Pacific rim bio-based composites symposium, Bogor, Indonesia, pp. 305–331.
  • Xie, Y., Fu, Q., Wang, Q., Xiao, Z. and Militz, H. (2013) Effects of chemical modification on the mechanical properties of wood. European Journal of Wood and Wood Products, 71(4), 401–416.
  • Yang, T., Cao, J. and Ma, E. (2019) How does delignification influence the furfurylation of wood? Industrial Crops and Products, 135, 91–98.
  • Zhou, S., Xue, Y., Sharma, A. and Bai, X. (2016) Lignin valorization through thermochemical conversion: Comparison of hardwood, softwood and herbaceous lignin. ACS Sustainable Chemistry and Engineering, 4(12), 6608–6617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.