174
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Decay resistance of thermally modified Eucalyptus grandis wood against wild strains of Trametes versicolor and Pycnoporus sanguineus

, , , , , & show all
Pages 478-487 | Received 11 Jun 2020, Accepted 15 Feb 2021, Published online: 26 Feb 2021

References

  • Allegretti, O., Brunetti, M., Cuccui, I., Ferrari, S., Nocetti, M. and Terziev, N. (2012) Thermo-vacuum modification of wpspruce (Picea abies Karst.) and Fri (Abies alba Mill.) wood. BioResources, 7(3), 3656–3669.
  • Alonso, R., Lupo, S., Martínez, S., Tiscornia, S. and Bettucci, L. (2012) Development of sprouted stumps of Eucalyptus globulus and E. maidenii in Uruguay. Australian Forestry, 75(2), 130–134.
  • Altgen, M., Kyyrö, S., Paajanen, O. and Rautkari, L. (2020) Resistance of thermally modified and pressurized hot water extracted Scots pine sapwood against decay by the brown-rot fungus Rhodonia placenta. European Journal of Wood and Wood Products, 78(1), 161–171.
  • Amilivia, A., Martínez, J. and Dieste, A. (2017) Hygroscopicity of thermally modified Eucalyptus grandis timber (in Spanish). CLEM-CIMAD 2017, II Latin American Congress on Timber Structures, II Ibero-American Congress on Timber Construction, 17–19 May 2017, Junín, Argentina, pp. 971–976.
  • Batista, D., Tomaselli, I. and Klitzke, R. J. (2011) Efeito do tempo e da temperatura de modificação térmica na redução do inchamento máximo da madeira de Eucalyptus grandis Hill ex Maiden (in Portuguese). Ciência Florestal, 21(3), 533–540.
  • Bhuiyan, M. T. and Hirai, N. (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46(6), 431–436.
  • Boonstra, M. J. and Tjeerdsma, B. (2006) Chemical analysis of heat treated softwoods. Holz als Roh- und Werkstoff, 64(3), 204–211.
  • Böthig, S., Sánchez, A. and Doldán, J. (2008) Durabilidad natural de madera de Eucalyptus grandis Hill ex Miaden de plantaciones de rápido crecimiento (in Spanish). INNOTEC, 3, 7–16.
  • Bravery, A. F. (1978) A miniaturized wood block for the rapid evaluation of wood preservative fungicides. The 10th Annual Meeting of the International Research Group on Wood Protection. 18–22 Sept 1978, Peebles, Scotland, UK, IRG/WP 2113.
  • Brosse, N., El Hage, R., Chaouch, M., Pétrissans, M., Dumarçay, S. and Gérardin, P. (2010) Investigation of the chemical modifications of beech wood lignin during heat treatment. Polymer Degradation and Stability, 95(9), 1721–1726.
  • Calonego, F. W., Severo, E. T. and Furtado, E. L. (2010) Decay resistance of thermally-modified Eucalyptus grandis wood at 140°C, 160°C, 180°C, 200°C and 220°C. Bioresource Technology, 101(23), 9391–9394.
  • Candelier, K., Dumarçay, S., Pétrissans, A., Desharnais, L., Gérardin, P. and Pétrissans, M. (2013) Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: Nitrogen or vacuum. Polymer Degradation and Stability, 98(2), 677–681.
  • CEN (1996) EN 113:1996. Wood Preservatives. Test Method for Determining the Protective Effectiveness Against Wood Destroying Basidiomycetes. Determination of the Toxic Values (Brussels: European Committee for Standardization).
  • CEN (2016) EN 350:2016. Durability of Wood and Wood-Based Products. Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials (Brussels: European Committee for Standardization).
  • Cuffré, A. G., Calvo, C. F., Genovese, F. V., Dorado, M. L. and Piter, J. C. (2010) Caracterización de la durabilidad natural de la madera de Eucalyptus grandis de Argentina para su utilización en construcciones (in Spanish). VI Congreso internacional sobre patología y recuperación de estructuras, 2–4 June 2010, Córdoba, Argentina.
  • Daniel, G. (2016) Fungal degradation of wood cell wall. In Y. S. Kim, R. Funada, and A. P. Singh (eds.), Secondary Xylem Biology (Boston: Academic Press, Elsevier), pp. 131–167.
  • Dieste, A., Baño, V., Cabrera, M. N., Clavijo, L., Palombo, V., Moltini, G. and Cassella, F. (2018) Forest-based bioeconomy areas. Strategic products from a technological point of view. Conocimiento Libre Repositorio Institucional, Facultad de Ingeniería – Universidad de la República, Montevideo, August.
  • Dieste, A., Cabrera, M. N., Clavijo, L. and Cassella, N. (2019) Analysis of wood products from an added value perspective: The Uruguayan forestry case. Maderas, Ciencia y Tecnología, 21(3), 305–316.
  • Dirección General Forestal (2018) Superficie efectiva en hectáreas por uso forestal y especies por departamento (in Spanish) (Montevideo: Ministerio de Ganadería, Agricultura y Pesca).
  • Dirección General Forestal (2019) Estadísticas forestales 2019 (in Spanish) (Montevideo: Ministerio de Ganadería, Agricultura y Pesca).
  • Endo, K., Obataya, E., Zeniya, N. and Matsuo, M. (2016) Effects of heating humidity on the physical properties of hydrothermally treated spruce wood. Wood Science and Technology, 50(6), 1161–1179.
  • Esteves, B. M., Domingos, I. J. and Pereira, H. M. (2008a) Pine wood modification by heat treatment in air. Bioresources, 3(1), 142–154.
  • Esteves, B., Garça, J. and Pereira, H. (2008b) Extractive composition and summative chemical analysis. Holzforschung, 62(3), 344–351.
  • Esteves, B., Marques, A. V., Domingos, I. and Pereira, H. (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus grandis) wood. Wood Science and Technology, 41(3), 193–207.
  • Gao, J., Kim, S. J., Terziev, N. and Daniel, G. (2016) Decay resistance of softwoods and hardwoods thermally modified by the thermovouto type thermo-vacuum process to brown rot and white rot fungi. Holzforschung, 70(9), 877–884.
  • Garrote, G., Domínguez, H. and Parajó, J. C. (1999) Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff, 57(3), 191–202.
  • Global Bioeconomy Summit (2015) Making Bioeconomy Work for Sustainable Development. 24–26 November 2015, Berlin.
  • Hailwood, A. J. and Horrobin, S. (1946) Absorption of water by polymers: analysis in terms of a simple model. Transactions of the Faraday Society, 42(B), 84–92.
  • Hakkou, M., Pétrissans, M., Gérardin, P. and Zoulalian, A. (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability, 91(2), 393–397.
  • Hill, C. A. (2006) Wood Modification: Chemical, Thermal and Other Processes (Chichester: John Wiley&Sons, Ltd).
  • Humar, M., Peek, R. D. and Jermer, J. (2006) Regulations in the European Union with emphasis on Germany, Sweden and Slovenia. In T. G. Townsend and H. Solo-Gabriele (eds.), Environmental Impacts of Treated Wood (Boca Raton: CRC Press, Taylor & Francis Group), pp. 37–57.
  • Kaar, W. E., Cool, L. G. and Merriman, M. M. (1991) The complete analysis of wood polysacharides using HPLC. Journal of Wood Chemistry and Technology, 11(4), 447–463.
  • Kim, J. S., Gao, J. and Daniel, G. (2015) Cytochemical and immunocytochemical characterization of wood decayed by the white rot fungus Pycnoporus sanguineus II. Degradation of lignin and non-cellulosic polysaccharides in European ash wood. International Biodeterioration & Biodegradation, 105, 41–50.
  • Lekounougou, S. and Kocaefe, D. (2013) Bioresistance of thermally modified Populus tremuloides (North American Aspen) wood against four decay fungi. International Wood Products Journal, 4(1), 46–51.
  • Li, T., Cheng, D.-L., Avramidis, S. and Wålinder, M. E. (2017) Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Construction and Building Materials, 144, 671–676.
  • Lorenzo, D., Troya, M. T., Piter, J. C., Sánchez, M. and Baso, C. (2009) Study of the natural durability of Eucalyptus grandis wood from Argentina. The 40th Annual Meeting of the International Research Group on Wood Protection. 24–28 May 2009, Beijing, China, IRG/WP 09-10689.
  • Luna, M. L., Murace, M. A., Keil, G. D. and Otaño, M. E. (2004) Patterns of decay caused by Pycnoporus sanguineus and Ganoderma lucidum (Aphyllophorales) in poplar wood. IAWA Journal, 25(4), 425–433.
  • Martínez, S. (2014) Comunidades de Basidiomycetes lignícolas en bosques nativos de Uruguay y factores que condicionan su composición (in Spanish). Thesis (PhD), Universidad de la República.
  • Militz, H. and Altgen, M. (2014) Processes and properties of thermally modified wood manufactured in Europe. In T. P. Schultz (ed.), Deterioration and Protection of Sustainable Biomaterials (Washington, DC: American Chemical Society), pp. 269–285.
  • Mohareb, A., Sirmah, P., Pétrissans, M. and Gérardin, P. (2012) Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. European Journal of Wood and Wood Products, 70(4), 519–524.
  • OECD (2009) The Bioeconomy to 2030: Designing a Policy Agenda (París: OECD Publishing).
  • Olek, W., Majka, J. and Czajkowski, Ł (2013) Sorption isotherms of thermally modified wood. Holzforschung, 67(2), 183–191.
  • OPP (2019) Oportunidades para el futuro de la bioeconomía forestal en Uruguay (in Spanish) (Montevideo: Presidencia de la República).
  • Rautkari, L., Hill, C. A., Curling, S., Jalaludin, Z. and Ormondroyd, G. (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? Journal of Materials Science, 48(18), 6352–6356.
  • Schmitt, S., Zhang, J., Shields, S. and Schultz, T. (2014) Copper-based wood preservative systems used for residential applications in North America and Europe. In B. G. Tor and P. Schultz (eds.), Deterioration and Protection of Sustainable Biomaterials (Washington, DC: American Chemical Society), pp. 217–225.
  • Shafizadeh, F. and Bradbury, A. G. (1978) Thermal degradation of cellulose in air and nitrogen at low temperatures. Journal of Applied Polymer Science, 23(5), 1431–1442.
  • Shafizadeh, F. and Chin, P. P. (1977) Thermal deterioration of wood. In I. S. Goldstein (ed.), Wood Technology: Chemical Aspects (Washington, DC: American Chemical Society), pp. 57–81.
  • Sivonen, H., Maunu, S. L., Sundholm, F., Jämsä, S. and Viitaniemi, P. (2002) Magnetic resonance studies of thermally modified wood. Holzforschung, 56(5), 648–654.
  • Skaar, C. (1988) Wood-Water Relations (Berlín: Springer-Verlag).
  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2012) Determination of Structural Carbohydrates and Lignin in Biomass. Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory.
  • Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008) Determination of Extractives in Biomass. Technical Report NREL/TP-510-042619. National Renewable Energy Laboratory.
  • Thybring, E. E. (2013) The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. International Biodeterioration & Biodegradation, 82, 87–95.
  • Thybring, E. E., Kymäläinen, M. and Rautkari, L. (2018) Moisture in modified wood and its relevance for fungal decay. iForest – Biogeosciences and Forestry, 11(3), 418–422.
  • Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekeley, P. and Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff, 56(3), 149–153.
  • Tjeerdsma, B. F. and Militz, H. (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff, 63(2), 102–111.
  • Van Acker, J., Stevens, M., Carey, J., Sierra-Alvarez, R., Militz, H., LeBayon, I., Kleist, G. and Peek, R. D. (2003) Biological durability of wood in relation to end-use. Part 1. Towards a European standard for laboratory testing of biological durability of wood. Holz als Roh- und Werkstoff, 61(1), 35–45.
  • Verma, P., Dyckmans, J., Militz, H. and Mai, C. (2008) Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity. Applied Microbial and Cell Physiology, 80(1), 125–133.
  • Vivian, M. A., Santini, E. J., Modes, K. S. and Corrêa Morais, W. W. (2012) Quality of autoclave preservative treatment of Eucalyptus grandis and Eucalyptus cloeziana wood. Scientia Forestalis, 40(96), 445–453.
  • Weiland, J. J. and Guyonnet, R. (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh- und Werkstoff, 61(3), 216–220.
  • Welzbacher, C. R., Brischke, C. and Otto Rapp, A. (2007) Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Material Science and Engineering, 2(2), 66–76.
  • Wentzel, M., Altgen, M. and Militz, H. (2018) Analyzing reversible changes in hygroscopicity of thermally modified eucalyptus wood from open and closed reactor systems. Wood Science and Technology, 52(4), 889–907.
  • Wentzel, M., Fleckenstein, M., Hofmann, T. and Militz, H. (2019) Relation of chemical and mechanical properties of Eucalyptus nitens wood thermally modified in open and closed systems. Wood Material Science and Engineering, 14(3), 165–173.
  • Zauer, M., Kretzschmar, J., Großmann, L., Pfriem, A. and Wagenführ, A. (2014) Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry. Wood Science and Technology, 48(1), 177–193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.