354
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Wood–cement boards with addition of coconut husk

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 617-626 | Received 01 Sep 2020, Accepted 05 Apr 2021, Published online: 21 Apr 2021

References

  • Abreu, G. B., Costa, S. M. M., Gumieri, A. G., Calixto, J. M. F., França, F. C., Silva, C. and Quiñones, A. D. (2017) Mechanical properties and microstructure of high-performance concrete containing stabilized with nano-silica. Revista Matéria, 22(2), 1–15. DOI:10.1590/s1517-707620170002.0156
  • Aguda, L., Ajayi, B., Bakare, B., Aguda, Y., Olaoye, K., Akala, A. and Adegoke, O. (2021) Strength and dimensional stability of cement bonded board reinforced with tomato stem particles and coconut husk dust. Bio Resources, 16(1), 572–582.
  • Akinyemi, B. A., Bamidele, A. and Joel, E. (2019) Response of coir fiber reinforced cement composites to water repellent chemical additive and microwave accelerated curing. Cellulose, 26(6), 4987–4999. DOI:10.1007/s10570-019-02414-z
  • Alharbi, M. A. H., Hirai, S., Tuan, H. A., Akiota, S. and Shoji, W. (2020) Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves. Polymer Testing, 84, 106384. DOI:10.17632/ng5289v2y8.2
  • Ali, M., Liu, A., Sou, H. and Chouw, N. (2012) Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, 814–825. DOI:10.1016/j.conbuildmat.2011.12.068
  • American Society for Testing and Material – ASTM (2012) ASTM D 1037: Standard methods of evaluating the properties of wood-base fiber and particle panel materials. Philadelphia. DOI:10.1520/D1037-12
  • Andrade, C. R., Trugilho, P. F., Napoli, A., Quinhones, R. and Lima, J. T. (2011) Calibrations using the technique of near infrared spectroscopy for content of extractives, lignin total and holocellulose using spectra obtained in solid wood. Ambiência, 7(1), 39–49. DOI:10.5777/ambiencia.2011.01.03ac
  • Araújo, C. A. C., Trugilho, P. F., Napoli, A. C., Braga, P. P., Lima, R. V. and Protásio, T. P. (2016) Effects of the syringyl/guaiacyl ratio and of lignin-derived phenols on the wood and charcoal characteristics in Eucalyptus spp. Scientia Forestalis, 44(110), 405–414. DOI:10.18671/scifor.v44n110.13
  • Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B. and Shin, U. C. (2007) Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21(2), 277–288. DOI:10.1016/j.conbuildmat.2005.08.028
  • Ashori, A., Tabarsa, T. and Sepahvand, S. (2012) Cement-bonded composite boards made from poplar strands. Construction and Building Materials, 26(1), 131–134. DOI:10.1016/j.conbuildmat.2011.06.001
  • Associação Brasileira de Normas Técnicas – ABNT (2003a) NBR 13999: Papel, cartão, pastas celulósicas e madeira: determinação do resíduo (cinza) após a incineração a 525° C.
  • Associação Brasileira de Normas Técnicas – ABNT (2003b) NBR 11941: Madeira – Determinação da densidade básica.
  • Associação Brasileira de Normas Técnicas – ABNT (2010) NBR 14853: Madeira: determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona.
  • Bilba, K., Arsene, A. and Ouensanha, A. (2003) Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cement and Concrete Composites, 25(1), 91–96. DOI:10.1016/S0958-9465(02)00003-3
  • Bilcati, G. K., Matoski, A., Trianoski, R. and Lengowski, E. (2018) Potential use of curauá fiber (Ananas erectifolius) for cementitious production composite. Revista de ingeniería de construcción, 33(2), 155–160. DOI:10.4067/S0718-50732018000200155
  • Brasileiro, G. A. M., Vieira, J. A. R. and Barreto, L. S. (2013) Use of coir pith particles in composites with Portland cement. Journal of Environmental Management, 131(19), 228–238. DOI:10.1016/j.jenvman.2013.09.046
  • Brígida, A. I. S., Calado, V. M. A., Gonçalves, L. R. B. and Coelho, M. A. Z. (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, 79, 832–838.
  • British Standards Institution – BSI (2007) BS EN 634-2: Cement-bonded particleboards – Specifications – Part 2: Requirements for OPC bonded particleboards for use in dry, humid and external conditions. British Standard.
  • Brose, A., Kongoletos, J. and Glicksman, L. (2019) Coconut fiber cement panels as wall insulation and structural diaphragm. Frontiers in Energy Research, 7(9), 1–9. DOI:10.3389/fenrg.2019.00009
  • Caraschi, J. C., Dezajacomo, G. and Prates, G. A. (2019) Evaluation of biomass properties for the production of solid biofuels. Floresta e Ambiente, 26(2), e20180433. DOI:10.1590/2179-8087.043318
  • Cardoso, M. S. and Gonçalez, J. C. (2016) Coconut husk (Cocos nucifera L.) for cellulose pulp production. Ciência Florestal, 26(1), 321–330. DOI:10.5902/1980509821126
  • Carneiro, A. C. O., Vital, B. R., Frederico, P. G. U., Figueiró, C. G., Fialho, L. F. and Silva, C. M. S. (2017) Energetic characterization of the wood from Eucalyptus clones grown in different localities. Ciência da Madeira, 8(3), 127–135. DOI:10.12953/2177-6830/rcm.v8n3p127-135
  • Carvalho, K. C. C., Mulinari, D. R., Voorwald, H. J. C. and Cioffi, M. O. H. (2010) Chemical modification effect on the mechanical properties of hips/coconut fiber composites. BioResources, 5(2), 1143–1155.
  • Castro, V. G., Azambuja, R. R., Parchen, C. F. A. and Iwakiri, S. (2019) Alternative vibro-dynamic compression processing of wood-cement composites using Amazonian wood. Acta Amazonica, 49(1), 75–80. DOI:10.1590/1809-4392201800192
  • Castro, V. G., Braz, R. L., Azambuja, R. R., Loiola, P. L., Iwakiri, S. and Matos, J. L. M. (2015) Wood-cement boards of Eucalyptus saligna with different chemical additives and methods of formation. Floresta, 45(2), 349–360. DOI:10.5380/rf.v45i2.35765
  • Cravo, J. C. M., Sartori, D. L., Fiorelli, J., Baliero, J. C. C. and Savastano Junior, H. (2015) Particleboards of agroindustrial wastes. Ciência Florestal, 25(3), 721–730. DOI:10.5902/1980509819675
  • Del Menezzi, C. H. S., Souza, M. R. and Gonçalez, J. C. (1996) Fabrication and technical avaliation of the particleboard from mixture of Eucalyptus urophylla T.S. Blake and Pinus oocarpa Schiede. Revista Árvore, 20(3), 367–370.
  • Devi, K. S., Lakshmi, V. V. and Alakanandana, A. (2017) Impacts of cement industry on environment – An overview. Asian Pacific Journal of Research, I(LVII), 156–161.
  • Farias Neto, J. T., Lins, P. M. P., Resende, M. D. V. and Muller, A. A. (2009) Genetic selection in hybrid progenies of coconut palm. Revista Brasileira de Fruticultura, 31, 190–196. DOI:10.1590/S0100-29452009000100026
  • Ferraz, J. M., Del Menezzi, C. H. S., Teixeira, D. E. and Martins, S. A. (2011) Effects of treatment of coir fiber and cement/fiber ratio on properties of cement-bonded composites. BioResources, 6(3), 3481–3492.
  • Ferraz, J. M., Del Menezzi, C. H. S., Souza, M. R., Okino, E. Y. A. and Martin, S. A. (2012) Compatibility of pretreated coir fibres (Cocos nucifera L.) with Portland cement to produce mineral composites. International Journal of Polymer Science, 4(1), 1–7. DOI:10.1155/2012/290571
  • Food and Agriculture Organization – FAO (2019) Food and agricultural data. Accessed 2 February 2020, available at: http://www.fao.org/faostat/en/#data/QC
  • Fiorelli, J., Gomide, C. A., Lahr, F. A. R., Nascimento, M. F., Sartori, D. L., Ballesteros, J. E. M., Bueno, S. B. and Belini, U. L. (2014) Physico-chemical and anatomical characterization of residual lignocellulosic fibers. Cellulose, 21(5), 3269–3277. DOI:10.1007/s10570-014-0398-9
  • Garcez, M. R., Garcez, E. O., Machado, A. O. and Gatto, D. A. (2016) Cement-wood composites: Effects of wood species, particle treatments and mix proportion. International Journal of Composite Materials, 6(1), 1–8. DOI:10.5923/j.cmaterials.20160601.01
  • Gomide, J. L. and Demuner, B. J. (1986) Determinação do teor de lignina em material lenhoso: método Klason modificado. O papel, 47(8), 36–38.
  • Hilig, E., Haselein, C. R. and Santini, E. J. (2004) Dimensional stability of structural flakeboard made from pine wood, Eucalyptus and wattle. Scientia Forestalis, 65, 80–94.
  • Hoe, T. K. (2018) The current scenario and development of the coconut industry. The Planter; Kuala Lumpur, 94(1108), 413–426.
  • Jorge, F. C., Pereira, C. and Ferreira, J. M. F. (2004) Wood-cement composites: A review. Holz als Roh und Werkstoff, 62(5), 370–377. DOI:10.1007/s00107-004-0501-2
  • Khalil, H. P., Shawkataly, A., Alwani, M. S. and Omar, A. K. M. (2007) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 1(2), 220–232.
  • Kochova, K., Gauvin, F., Schollbach, K. and Brouwers, H. J. H. (2020) Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Construction and Building Materials, 231, 117121. DOI:10.1016/j.conbuildmat.2019.117121
  • Lertwattanaruk, P. and Suntijitto, A. (2015) Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials, 94, 664–669. DOI:10.1016/j.conbuildmat.2015.07.154
  • Lima, D. C., Melo, R. R., Pimenta, A. P., Pedrosa, T. D., Souza, M. J. C. and Souza, E. C. (2020) Physical–mechanical properties of wood panel composites produced with Qualea sp. sawdust and recycled polypropylene. Environmental Science and Pollution Research, 27, 4858–4865. DOI:10.1007/s11356-019-06953-7
  • Machado, F., Furtado, M. B., Serrano, K. J. P., Parente, M. O. M., Fiorelli, J. and Savastano Junior, H. (2017) Agglomerated panels made from babaçu coconut residues. Agrária, 12(2), 202–209. DOI:10.5039/agraria.v12i2a5434
  • Marafon, A. C., Nunes, U. M. C., Amaral, A. F. C. and Santos, J. P. (2019) Aproveitamento de cascas de coco para geração de energia térmica: potencialidades e desafios. Empresa Brasileira de Pesquisa Agropecuária – Embrapa Tabueiros Costeiros, Documentos 234, Aracaju-SE, Brazil.
  • Marques, M. L., Velasco, F. L. C. G., Luzardo, F. H. M., Milian, F. M., Jesus, F. A. A. and Silva, E. J. (2018) Evaluation of the green coconut fiber compatibility with cement by using different calculation methods. Revista Ibero Americana de Ciências Ambientais, 9(7), 171–187. DOI:10.6008/CBPC2179-6858.2018.007.0016
  • Medeiros, B. L. M. A., Guimarães Junior, J. B. G., Ribeiro, M. X., Lisboa, F. J. N., Guimarães, I. L. and Protásio, T. P. (2016) Evaluation of physical and chemical properties corymbia citriodora and Eucalyptus urograndis wood, cultured in Piauí, Brazil. Nativa, 4(6), 403–407. DOI:10.14583/2318-7670.v04n06a10
  • Melo, R. R., Stangerlin, D. M., Souza, A. P., Cadermatori, P. H. G. and Schneid, E. (2015) Physical mechanical properties of wood-bamboo particleboard. Ciência Rural, 45(1), 35–42. DOI:10.1590/0103-8478cr20120970
  • Mendes, L. M., Loschi, F. A. P., Paula, L. E. R., Mendes, R. F., Guimarães Júnior, J. B. and Mori, F. A. (2011) Utilization potential of wood clones of Eucalyptus urophylla in the production of wood-cement panels. Cerne, 17(1), 69–75. DOI:10.1590/S0104-7760201100010000
  • Monsalve, M., Higuera, O., Estrada, P., Orozco, M. and Pedraza, C. (2018) Production of structural type mortars reinforced with coconut fibre. Contemporary Engineering Sciences, 11(85), 4211–4218. DOI:10.12988/ces.2018.88394
  • Narciso, C. R. P., Reis, A. H. S., Mendes, J. F., Nogueira, N. D. and Mendes, R. F. (2021) Potential for the use of coconut husk in the production of medium density particleboard. Waste and Biomass Valorization, 12, 1647–1658.
  • Nasser, A., Salem, M. Z., Al-Mefarreja, H. A. and Alef, I. M. (2016) Use of tree pruning wastes for manufacturing of wood reinforced cement composites. Cement and Concrete Composites, 72(8), 246–256. DOI:10.1016/j.cemconcomp.2016.06.008
  • Odeyemi, S. O., Abdulwahaba, R., Adeniyi, A. G. and Atoyebic, O. D. (2020) Physical and mechanical properties of cement-bonded particle board produced from African balsam tree (Populous balsamifera) and periwinkle shell residues. Results in Engineering, 6, 100126. DOI:10.1016/j.rineng.2020.100126
  • Olorunnisola, A. O. (2009) Effects of husk particle size and calcium chloride on strength and sorption properties of coconut husk-cement composites. Industrial Crops and Products, 29, 495–501. DOI:10.1016/j.indcrop.2008.09.009
  • Onuaguluchi, O. and Banthia, N. (2016) Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68(4), 96–108. DOI:10.1016/j.cemconcomp.2016.02.014
  • Parchen, C. F. A., Iwakiri, S., Zeller, F. and Prata, J. G. (2016) Vibro-dynamic compression processing of low-density wood-cement composites. European Journal of Wood and Wood Products, 74(1), 75–81. DOI:10.1007/s00107-015-0982-1
  • Pereira, C. L., Savastano Jr, H., Payá, J., Santos, S. F., Borrachero, M. V., Monzó, J. and Soriano, L. (2013) Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Industrial Crops and Products, 49, 88–96. DOI:10.1016/j.indcrop.2013.04.038
  • Pereira, T. G. T., Silva, D. W., Eugênio, T. M. C., Scatolino, M. V., Terra, I. C. C., Fonseca, C. S., Bufalino, L., Mendes, R. F. and Mendes, L. M. (2020) Coconut fibers and quartzite wastes for fiber-cement production by extrusion. Materials Today: Proceedings, 31, S309–S314. DOI:10.1016/j.matpr.2020.01.394
  • Philip, S. and Rakendu, R. (2020) Thermal insulation materials based on water hyacinth for application in sustainable buildings. Materials Today: Proceedings, 33(7), 3803–3809. DOI:10.1016/j.matpr.2020.06.219
  • Queiroz, S. C. S., Gomide, J. L., Colodette, J. L. and Oliveira, R. D. (2004) Effect of wood basic density on kraft pulp quality of hybrid Eucalyptus grandis W. Hill ex Maiden X Eucalyptus urophylla S.T. Blake clones. Revista Árvore, 28(6), 901–909. DOI:10.1590/S0100-67622004000600016
  • Quiñones-Bolaños, E., Gómes-Oviedo, M., Mouthon-Bello, J., Sierra-Viola, L., Berardi, U. and Bustillo-Lecompte, C. (2021) Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing. Journal of Environmental Management, 277, 111503. DOI:10.1016/j.jenvman.2020.111503
  • Santos, S. R. and Sansígolo, C. A. (2007) Influência da densidade básica da madeira de clones de Eucalyptus grandis x Eucalyptus urophylla na qualidade da polpa branqueada. Ciência Florestal, 17(1), 53–63.
  • Sarmin, S. N., Salim, N. and Mohammad, A. (2019) Effects of different wood aggregates on the compressive strength offly ash and metakaolin-based geopolymer lightweight composites. Songklanakarin Journal of Science and Technology, 41(4), 734–741.
  • Silva, J., Marques, M. M., Garcia, V. F., Martínez, L. F. and Mitsuuchi, T. M. (2017) A new treatment for coconut fibers to improve the properties of cement-based composites – combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies, 12(2), 44–51. DOI:10.1016/j.susmat.2017.04.003
  • Silva, J. V. F., Bianchi, N. A., Oliveira, C. A. B., Caraschi, J. C., Souza, A. J. D., Molina, J. C. and Campos, C. I. (2019) Characterization of composite formed by cement and wheat straw treated with sodium hydroxide. BioResouces, 14(2), 2472–2479.
  • Soares, S. S., Guimarães Junior, J. B., Mendes, L. M., Mendes, R. F., Protásio, T. P. and Lisboa, F. J. N. (2017) Valorization of sugarcane bagasse for production of low-density particleboards. Ciência da Madeira, 8(2), 64–73. DOI:10.12953/2177-6830/rcm.v8n2p64-73
  • Technical Association of The Pulp and Paper Industry – TAPPI (1999) TAPPI 207 cm-99. Water solubility of wood and pulp. Atlanta.
  • Technical Association of The Pulp and Paper Industry – TAPPI (2007) TAPPI 204 cm-97. Solvent extractives of wood and pulp. Atlanta.
  • Ye, H., Asante, B., Schmidt, G., Krause, A., Zhang, Y. and Yu, Z. (2021) Interfacial bonding properties of the eco-friendly geopolymer-wood composites: influences of embedded wood depth, wood surface roughness, and moisture conditions. Journal of Materials Science, 56, 7420–7433. DOI:10.1007/s10853-021-05775-8
  • Yel, H., Cavdar, A. D. and Torun, S. B. (2020) Effect of press temperature on some properties of cement bonded particleboard. Maderas. Ciencia y Tecnología, 22(1), 83–92. DOI:10.4067/S0718-221X2020005000108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.