220
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Application and potential of shape memory alloys for dowel-type connections in timber structures

, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 636-647 | Received 07 Aug 2020, Accepted 13 Apr 2021, Published online: 10 May 2021

References

  • Ali, M. and Nehdi, M. (2017) Innovative crack-healing hybrid fiber reinforced engineered cementitious composite. Construction and Building Materials, 150, 689–702. https://doi.org/10.1016/j.conbuildmat.2017.06.023
  • ASTM International (2002) ASTM D5764-97a. Standard test method for evaluating dowel-bearing strength for wood and wood-based products.
  • Buehler, W., Gilfrich, J. V. and Wiley, R. C. (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near compsition TiNi. Journal of Applied Physics, 34(5), 1475–1477. https://doi.org/10.1063/1.1729603
  • Czaderski, C., Hahnebach, B. and Motavalli, M. (2006) RC beam with variable stiffness and strength. Construction and Building Materials, 20(9), 824–833. https://doi.org/10.1016/j.conbuildmat.2005.01.038
  • Dasgupta, R. (2014) A look into Cu-based shape memory alloys: Present scenario and future prospects. Journal of Materials Research, 29(16), 1681–1698. https://doi.org/10.1557/jmr.2014.189
  • DesRoches, R. and Delemont, M. (2002) Seismic retrofit of simply supported bridges using shape memory alloys. Engineering Structures, 24, 325–332.
  • Deutsches Institut für Normung (2005) Timber Structures – Test Methods – Cyclic Testing of Joints Made with Mechanical Fasteners, German Version EN 1251:2001 + A1:2005-12 (Berlin: Beuth Verlag).
  • Huang, H. and Chang, W. S. (2017) Seismic resilience timber connection-adaption of shape memory alloy tubes as dowels. Structural Control and Health Monitoring, 24(10), e1980. https://doi.org/10.1002/stc.1980
  • Huang, H., Chang, W. S. and Mosalam, K. M. (2017) Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive in service vibration. Structural Control and Health Monitoring, 24(2), e1858. https://doi.org/10.1002/stc.1858
  • Huang, H. and Chang, W. S. (2018a) Reducing footfall-induced vibration in the timber floor system using a pre-stressed shape memory alloy-based tuned mass damper. In: Proceedings of the World Conference on Timber Engineering 2018. World Conference on Timber Engineering, 20-23 Aug 2018, Seoul, Rep. of Korea. WCTE.
  • Huang, H. and Chang, W. S. (2018b) Application of pre-stressed SMA-based tuned mass damper to a timber floor system. Engineering Structures, 167, 143–150. https://doi.org/10.1016/j.engstruct.2018.04.011
  • Huang, H., Chang, W. and Chen, K. (2019) Study of SMA-dowelled timber connection reinforced by densified veneer wood under cyclic loading. MATEC Web of Conferences, 275, article number 01015. https://doi.org/10.1051/matecconf/201927501015.
  • Humbeeck, J. V. (2001) Shape memory alloys: A material and a technology. Advanced Engineering Materials, 3(11), 837–850. https://doi.org/10.1002/1527-2648(200111)3:11<837::AID-ADEM837>3.0.CO;2-0
  • Janke, L., Czaderski, C., Motavalli, M. and Ruth, J. (2005) Applications of shape memory alloys in civil engineering structures – overview, limits and new ideas. Materials and Structures, 38, 578–592. https://doi.org/10.1007/BF02479550
  • Johansen, K. W. (1949) Theory of timber connections. IABSE Publications, 9, 249–262. http://doi.org/10.5169/seals-9703
  • Kim, M., Kim, D., Chung, Y. and Choi, E. (2016) Direct tensile behavior of shape memory-alloy fiber-reinforced cement composites. Construction and Building Materials, 102, 462–470. https://doi.org/10.1016/j.conbuildmat.2015.11.015
  • Kurdjumov, G. and Khandros, L. (1949) First reports of the thermoelastic behavior of the martensitic phase of Au-Cd alloys. Doklady Akademii Nauk SSSR, 66, 211–213.
  • Lagoudas, D. C. (2008) Shape Memory Alloys – Modeling and Engineering Applications (New York: Springer Sience + Business Media). https://doi.org/10.1007/978-0-387-47685-8).
  • Maji, A. K. and Negret, I. (1998) Smart prestressing with shape memory alloy. Journal of Engineering Mechanics, 124(10), 1121–1128.
  • Moser, K., Bergamini, A., Christen, R. and Czaderski, C. (2005) Feasibility of concrete prestressed by shape memory alloy short fibers. Materials and Structures, 38, 593–600. https://doi.org/10.1007/BF02479551
  • Otsuka, K. and Wayman, C. M. (1999) Shape Memory Materials (Cambridge: Cambridge University Press).
  • Ölander, A. (1932) An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 54, 3819–3833.
  • Schick, M. and Seim, W. (2019) Overstrength values for light frame timber wall elements based on reliability methods. Engineering Structures, 185, 230–242.
  • Seim, W., Hummel, J. and Vogt, T. (2014) Earthquake design of timber structures. Remarks on force-based design procedures for different wall systems. Engineering Structures, 76, 124–137.
  • Seo, J., Hu, J. and Kim, K. (2017) Analytical investigation of the cyclic behavior of smart recentering T-stub components whit superelastic SMA bolts. Metals, 7(10), 386. https://doi.org/10.3390/met7100386
  • Shahverdi, M., Czaderski, C. and Motavalli, M. (2016) Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams. Construction and Building Materials, 112, 28–38. https://doi.org/10.1016/j.conbuildmat.2016.02.174
  • Speicher, M., DesRoches, R. and Leon, R. (2011) Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection. Engineering Structures, 33, 2448–2457. https://doi.org/10.1016/j.engstruct.2011.04.018
  • Sutou, Y., Omori, T., Yamauchi, K., Kainuma, R. and Ishida, K. (2005) Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn based shape memory wire. Acta Materialia, 53, 4121–4133. https://doi.org/10.1016/j.actamat.2005.05.013
  • Valente, C., Cardone, D., Dolce, M. and Ponzo, F. (2000) MANSIDE: Shaking table tests of R/C frames with various passive control systems. Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January– 4 February. Paper ID 2271.
  • Vogt, T., Hummel, J., Schick, M. and Seim, W. (2014) Experimentelle Untersuchungen für innovative erdbebensichere Konstruktionen im Holzbau. Bautechnik, 91(1), 1–14. https://doi.org/10.1002/bate.201300083
  • Vollmer, M., Segel, C., Krooß, P., Günther, J., Tseng, L. W., Karaman, I., Weidner, A., Biermann, H. and Niendorf, T. (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe-Mn-Al-Ni shape memory alloys. Scripta Materialia, 108, 23–26. https://doi.org/10.1016/j.scriptamat.2015.06.013
  • Vollmer, M., Krooß, P., Kriegel, M., Klemm, V., Somsen, C., Ozcan, H., Karaman, I., Weidner, A., Rafaja, D., Biermann, H. and Niendorf, T. (2016a) Cyclic degradation in Bamboo like Fe-Mn-Al-Ni shape memory alloys – The role of grain orientation. Scripta Materialia, 114, 156–160. https://doi.org/10.1016/j.scriptamat.2015.12.007
  • Vollmer, M., Krooß, P., Karaman, I. and Niendorf, T. (2016b) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scripta Materialia, 126, 20–23. https://doi.org/10.1016/j.scriptamat.2016.08.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.