477
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Determination of CNC processing parameters for the best wood surface quality via artificial neural network

ORCID Icon, ORCID Icon & ORCID Icon
Pages 685-692 | Received 18 Feb 2021, Accepted 10 May 2021, Published online: 18 May 2021

References

  • Antanasijević, D. Z., Pocajt, V. V., Povrenović, D. S., Ristić, M. Đ. and Perić-Grujić, A. A. (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Science of the Total Environment, 443, 511–519. doi:10.1016/j.scitotenv.2012.10.110
  • Bajić, D., Lela, B. and Živković, D. (2008) Modeling of machined surface roughness and optimization of cutting parameters in face milling. Metalurgija, 47(4), 331–334.
  • Bal, B. C. and Akcakaya, E. (2018) The effects of step over, feed rate and finish depth on the surface roughness of fiberboard processed with CNC machine. Furniture and Wooden Material Research Journal, 1(2), 86–93. doi:10.33725/mamad.481278
  • Bal, B. C. and Gündeş, Z. (2020) Surface roughness of medium-density fiberboard processed with CNC machine. Measurement, 153, 107421. doi:10.1016/j.measurement.2019.107421
  • Demirkir, C., Özsahin, Ş, Aydin, I. and Colakoglu, G. (2013) Optimization of some panel manufacturing parameters for the best bonding strength of plywood. International Journal of Adhesion and Adhesives, 46, 14–20. doi:10.1016/j.ijadhadh.2013.05.007
  • Deus, P. R., de Sampaio Alves, M. C. and Vieira, F. H. A. (2015) The quality of MDF workpieces machined in CNC milling machine in cutting speeds, feedrate, and depth of cut. Meccanica, 50(12), 2899–2906. doi:10.1007/s11012-015-0187-z
  • DIN 4768 (1990) Determination of Values of Surface Roughness Parameters Ra, Rz, Rmax Using Electrical Contact (Stylus) Instruments, Concepts and Measuring Conditions (Berlin: Deutsches Institut für Norming).
  • Esteban, L. G., Fernandez, F. G. and Palacios, P. (2011) Prediction of plywood bonding quality using an artificial neural network. Holzforschung, 65(2), 209–214. doi:10.1515/hf.2011.003
  • Fernández, F. G., Esteban, L. G., Palacios, P., Navarro, N. and Conde, M. (2008) Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model. Investigación agraria: Sistemas y recursos forestales, 17(2), 178–187.
  • Gawronski, T. (2013) Optimisation of CNC routing operations of wooden furniture parts. International Journal of Advanced Manufacturing Technology, 67(9-12), 2259–2267. doi:10.1007/s00170-012-4647-5
  • Hazir, E. and Koc, K. H. (2019) Optimization of wood machining parameters in CNC routers: Taguchi orthogonal array based simulated angling algorithm. Maderas. Ciencia y tecnología, 21(4), 493–510. doi:10.4067/S0718-221X2019005000406
  • Iskra, P. and Hernández, R. E. (2009) The influence of cutting parameters on the surface quality of routed paper birch and surface roughness prediction modeling. Wood and Fiber Science, 41(1), 28–37.
  • Koc, K. H., Erdinler, E. S., Hazir, E. and Öztürk, E. (2017) Effect of CNC application parameters on wooden surface quality. Measurement, 107, 12–18. doi:10.1016/j.measurement.2017.05.001
  • Küçükönder, H., Boyaci, S. and Akyüz, A. (2016) A modeling study with an artificial neural network: developing estimationmodels for the tomato plant leaf area. Turkish Journal of Agriculture and Forestry, 40(2), 203–212. doi:10.3906/tar-1408-28
  • Ozsahin, S. and Aydin, I. (2014) Prediction of the optimum veneer drying temperature for good bonding in plywood manufacturing by means of artificial neural network. Wood Science and Technology, 48(1), 59–70. doi:10.1007/s00226-013-0583-2
  • Ozsahin, S. and Murat, M. (2018) Prediction of equilibrium moisture content and specific gravity of heat treated wood by artificial neural networks. European Journal of Wood and Wood Products, 76(2), 563–572. doi:10.1007/s00107-017-1219-2
  • Prakash, S. and Palanikumar, K. (2011) Modeling for prediction of surface roughness in drilling MDF panels using response surface methodology. Journal of Composite Materials, 45(16), 1639–1646. doi:10.1177/0021998310385026
  • Raja, S. B. and Baskar, N. (2011) Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. The International Journal of Advanced Manufacturing Technology, 54(5-8), 445–463. doi:10.1007/s00170-010-2958-y
  • Sarikaya, M. and Gullu, A. (2014) Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. Journal of Cleaner Production, 65, 604–616. doi:10.1016/j.jclepro.2013.08.040
  • Sedlecký, M., Kvietková, M. S. and Kminiak, R. (2018) Medium-density fiberboard (MDF) and edge-glued panels (EGP) after edge milling-surface roughness after machining with different parameters. BioResources, 13(1), 2005–2021.
  • Sofuoglu, S. D. (2017) Determination of optimal machining parameters of massive wooden edge glued panels which is made of Scots pine (Pinus sylvestris L.) using Taguchi design method. European Journal of Wood and Wood Products, 75(1), 33–42. doi:10.1007/s00107-016-1028-z
  • Suresh, R., Basavarajappa, S., Gaitonde, V. N. and Samuel, G. L. (2012) Machinability investigations on hardened AISI 4340 steel using coated carbide insert. International Journal of Refractory Metals and Hard Materials, 33, 75–86. doi:10.1016/j.ijrmhm.2012.02.019
  • Sutcu, A. (2013) Investigation of parameters affecting surface roughness in CNC routing operation on wooden EGP. Bioresources, 8(1), 795–805.
  • Sutcu, A. and Karagoz, U. (2012) Effect of machining parameters on surface quality after face milling of MDF. Wood Research, 57(2), 231–240.
  • Sutcu, A. and Karagoz, U. (2013) The influence of process parameters on the surface roughness in aesthetic machining of wooden edge-glued panels (EGPs). BioResources, 8(4), 5435–5448.
  • Taşpınar, F. and Bozkurt, Z. (2014) Application of artificial neural networks and regression models in the prediction of daily maximum PM10 concentration in Düzce, Turkey. Fresenius Environ. Bull, 23, 2450–2459.
  • Tiryaki, S., Bardak, S. and Aydın, A. (2016) Modeling of wood bonding strength based on soaking temperature and soaking time by means of artificial neural networks. International Journal of Intelligent Systems and Applications in Engineering, 153–157. doi:10.18201/ijisae.2016Special%20Issue-146964
  • Tiryaki, S., Özşahin, Ş and Aydın, A. (2017) Employing artificial neural networks for minimizing surface roughness and power consumption in abrasive machining of wood. European Journal of Wood and Wood Products, 75(3), 347–358. doi:10.1007/s00107-016-1050-1
  • Varol, T., Canakci, A. and Ozsahin, S. (2018) Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks. Journal of Alloys and Compounds, 739, 1005–1014. doi:10.1016/j.jallcom.2017.12.256
  • Yadav, V. and Nath, S. (2017) Forecasting of PM 10 using autoregressive models and exponential smoothing technique. Asian Journal of Water, Environment and Pollution, 14(4), 109–113. doi:10.3233/AJW-170041
  • Zhong, Z. W., Hiziroglu, S. and Chan, C. T. M. (2013) Measurement of the surface roughness of wood based materials used in furniture manufacture. Measurement, 46(4), 1482–1487. doi:10.1016/j.measurement.2012.11.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.