60
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Generation and compression testing of spherical wood bodies

, , , , , , & show all
Pages 752-758 | Received 13 Mar 2021, Accepted 14 Jun 2021, Published online: 24 Jun 2021

References

  • Barbetta, A., Bertinetti, L., Lautru, J., Podor, R. and Zemb, T. (2018) Nano-, meso- and macro-swelling characterization of impregnated compression wood cell walls. Wood Science and Technology, 52(2), 421–443. doi:10.1007/s00226-017-0978-6
  • Coelho, C. L., Carvalho, L. M. H., Martins, J. M., Costa, C. A. V., Masson, D. and Méausoone, P. J. (2008) Method for evaluating the influence of wood machining conditions on the objective characterization and subjective perception of a finished surface. Wood Science and Technology, 42(3), 181–195. doi:10.1007/s00226-007-0166-1
  • Creţu, G. (1992) Fundamentals of experimental research. Laboratory handbook (in Romanian) “Gheorghe Asachi” Technical University of Iași, Romania.
  • Cygan, R. T. (2001) Molecular modeling in mineralogy and geochemistry. Reviews in Mineralogy and Geochemistry, 42(1), 1–35. doi:10.2138/rmg.2001.42.1
  • Cywa, K. (2018) Trees and shrubs used in medieval Poland for making everyday objects. Vegetation History and Archaeobotany, 27(1), 111–136. doi:10.1007/s00334-017-0644-9
  • De Magistris, F. and Salmén, L. (2005) Deformation of wet wood under combined shear and compression. Wood Science and Technology, 39, 460–471. doi:10.1007/s00226-005-0025-x
  • Dinwoodie, J. M. (1978) Failure in timber part 3: The effect of longitudinal compression on some mechanical properties. Wood Science and Technology, 12(4), 271–285. doi:10.1007/BF00351929
  • Gong, M. and Smith, I. (2004) Effect of load type on failure mechanisms of spruce in compression parallel to grain. Wood Science and Technology, 37(5), 435–445. doi:10.1007/s00226-003-0203-7
  • Heisel, U. and Ivanova, S. (2012) Investigations into the influence of the geometry of face milling cutters on the quality formation. Wood Material Science & Engineering, 7(3), 134–142. doi:10.1080/17480272.2012.662700
  • Isopescu, D., Stănilă, O., Astanei, I. and Corduban, C. (2012) Experimental analysis of wood mechanical properties from bending, tensile and compression tests. Revista Română de Materiale / Romanian Journal of Materials, 42(2), 204–219.
  • Kläusler, O., Rehm, K., Elstermann, F. and Niemz, P. (2014) Influence of wood machining on tensile shear strength and wood failure percentage of one-component polyurethane bonded wooden joints after wetting. International Wood Products Journal, 5(1), 18–26. doi:10.1179/2042645313Y.0000000039
  • Krimpenis, A. A., Fountas, N. A., Mantziouras, T. and Vaxevanidis, N. M. (2016) Optimizing CNC wood milling operations with the use of genetic algorithms on CAM software. Wood Material Science & Engineering, 11(2), 102–115. doi:10.1080/17480272.2014.961959
  • Nasir, V. and Cool, J. (2020) A review on wood machining: Characterization, optimization, and monitoring of the sawing process. Wood Material Science & Engineering, 15(1), 1–16. doi:10.1080/17480272.2018.1465465
  • Nasir, V., Mohammadpanah, A. and Cool, J. (2020) The effect of rotation speed on the power consumption and cutting accuracy of guided circular saw: Experimental measurement and analysis of saw critical and flutter speeds. Wood Material Science & Engineering, 15(3), 140–146. doi:10.1080/17480272.2018.1508167
  • Ormarsson, S., Dahlblom, O. and Johansson, M. (2009) Finite element study of growth stress formation in wood and related distortion of sawn timber. Wood Science and Technology, 43(5-6), 387–403. doi:10.1007/s00226-008-0209-2
  • Pichler, P., Springer, S. and Leitner, M. (2019) Evaluation of wood cutting forces in dry and wet conditions by small-scale chipping tests applying different analysis methods. Wood Material Science & Engineering, 14(3), 185–190. doi:10.1080/17480272.2018.1458749
  • Renaud, M., Rueff, M. and Rocaboy, A. C. (1996) Mechanical behaviour of saturated wood under compression. Wood Science and Technology, 30(3), 153–164. doi:10.1007/BF00231630
  • Scholz, F., Ratnasingam, J., Mazza, M. and Lachenmayr, G. (2016) Surface generation and assessment for peripheral milling. Wood Material Science & Engineering, 11(3), 182–188. doi:10.1080/17480272.2016.1157831

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.