318
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical and thermal properties of biocomposite films produced from hazelnut husk and polylactic acid

, &
Pages 783-789 | Received 30 Apr 2021, Accepted 12 Jul 2021, Published online: 22 Jul 2021

References

  • Acheampong, J. B., Angelis, M., Krause, A. and Meincken, M. (2021) The effect of raw material selection on physical and mechanical properties of wood plastic composites made from recycled LDPE and wood from invasive trees in South Africa. Wood Material Science & Engineering, 16(2), 118–123. doi:10.1080/17480272.2019.1635207
  • Alvarez, V. A., Ruscekaite, R. A. and Vazquez, A. (2003) Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. Journal of Composite Materials, 37(17), 1575–1588. doi:10.1177/0021998303035180
  • ASTM D3418 (2015) Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. American Society for Testing Materials, ASTM International, Volume 04.03, West Conshohocken, West Conshohocken, Pennsylvania, USA.
  • ASTM D882 (2018) Standard test method for tensile properties of thin plastic sheeting. American Society for Testing Materials, ASTM International, Volume 08.01, West Conshohocken, West Conshohocken, Pennsylvania, USA.
  • Ayrilmis, N., Kaymakci, A. and Ozdemir, F. (2013) Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. Journal of Industrial and Engineering Chemistry, 19(3), 908–914. doi:10.1016/j.jiec.2012.11.006
  • Ayrilmis, N., Yurttaş, E., Durmus, A., et al. (2021) Properties of biocomposite films from PLA and thermally treated wood modified with silver nanoparticles using leaf extracts of oriental sweetgum. Journal of Polymers and Environment, 29, 2409–2420. doi:10.1007/s10924-021-02065-x
  • Bax, B. and Müssig, J. (2008) Impact and tensile properties of PLA/cordenka and PLA/flax composites. Composites Science and Technology, 68, 1601–1607. doi:10.1016/j.compscitech.2008.01.004
  • Cava, D., Gavara, R., Lagarón, J. M. and Voelkel, A. (2007) Surface characterization of poly(lactic acid) and polycaprolactone by inverse gas chromatography. Journal of Chromatography A, 1148(1), 86–91. doi:10.1016/j.chroma.2007.02
  • Chong, T. Y., Law, M. C. and Chan, Y. S. (2021) The potentials of corn waste lignocellulosic fibre as an improved reinforced bioplastic composites. Journal of Polymers Environment, 29, 363–381. doi:10.1007/s10924-020-01888-4
  • Dominkovics, Z., Dányádi, L. and Pukánszky, B. (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Composites Part A: Applied Science and Manufacturing, 38(8), 1893–1901. doi:10.1016/j.compositesa.2007.04.001.110
  • FAO (2019) Production data of hazelnut with shell by country FAOSTAT database 2019. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#rankings/countries_by_commodity [Accessed 4 June 2021].
  • Güney, M. S. (2013) Utilization of hazelnut husk as biomass. Sustainable Energy Technologies and Assessments, 4, 72–77. doi:10.1016/j.seta.2013.09.004
  • Huda, M. S., Drzal, L. T., Misra, M., Mohanty, A. K., Williams, K. and Mielewski, D. F. (2005) A study on biocomposites from recyled newspaper fiber and poly(lactic acid). Industrial Engineering Chemistry Research, 44(15), 5593–5601. doi:10.1021/ie0488849
  • Hosseini, S. B., Hedjazi, S. and Jamalirad, L. (2017) Investigation on physical and mechanical properties of pulp–plastic composites from bagasse. Wood Material Science & Engineering, 12(5), 279–287. doi:10.1080/17480272.2016.1175505
  • ISO 291 (2008) Plastics – standard atmopsheres for conditioning and testing. International Organization for Standardization, Geneva, Switzerland. American Society for Testing Materials, ASTM International, Volume 04.03, West Conshohocken, West Conshohocken, Pennsylvania, USA.
  • Jang, J. Y., Jeong, T. K., Oh, H. J., Youn, J. R. and Song, Y. S. (2012) Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites. Composites Part B: Engineering, 43(5), 2434–2438. doi:10.1016/j.compositesb.2011.11.003
  • Lee, S. H. and Wang, S. (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 37, 80–91. doi:10.1016/j.compositesa.2005.04.015
  • Mertens, O., Krause, K. C., Weber, M. and Krause, A. (2020) Performance of thermomechanical wood fibers in polypropylene composites. Wood Material Science & Engineering, 15(2), 114–122. doi:10.1080/17480272.2018.1500494
  • Naeem Iqbal, H. M., Sungkapreecha, C. and Androsch, R. (2017) Enthalpy relaxation of the glass of poly (l-lactic acid) of different d-isomer content and its effect on mechanical properties. Polymer Bulletin, 74, 2565–2573. doi:10.1007/s00289-016-1854-5
  • Petinakis, E., Yu, L., Edward, G., Dean, K., Liu, H. and Scully, A. (2009) Effect of matrix–particle inter- facial adhesion on the mechanical properties of poly(lactic acid)/wood-flour microcomposites. Journal of Polymers and the Environment, 17(2), 83–94. doi:10.1007/s10924-009-0124-0
  • Plackett, D., Andersen, T. L., Pedersen, W. B. and Nielsen, L. (2003) Biodegradable composites based on L-polylactice and jute fibres. Composites Science and Technology, 63, 1287–1296. doi:10.1016/A0266-3538(03)00100-3
  • Pupure, L., Varna, J., Joffe, R., Berthold, F. and Miettinen, A. (2020) Mechanical properties of natural fiber composites produced using dynamic sheet former. Wood Material Science & Engineering, 15(2), 76–86. doi:10.1080/17480272.2018.1482368
  • Sanchez, F. A. C., Boudaoud, H., Hoppe, S. and Camargo, M. (2017) Polymer recycling in an open-source additive manufacturing context: Mechanical issues. Additive Manufacturing, 17, 87–105. doi:10.1016/j.addma
  • Tommaso, C., Filippo, R., Andrea, C. and Giuseppe, P. (2019) A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7, 259. doi:10.3389/fbioe.2019.00259
  • Xu, R., Xie, J. and Lei, C. (2017) Influence of melt-draw ratio on the crystalline behaviour of a polylactic acid cast film with a chi structure. RSC Advances, 7, 39914–39921. doi:10.1039/C7RA05422J
  • Wang, Y., Qi, R., Xiong, C. and Huang, M. (2011) Effects of coupling agent and interfacial modifiers on mechanical properties of poly(lactic acid) and wood flour biocomposites. Iranian Polymer Journal, 20(4), 281–294.
  • Wardhono, E. Y., Kanani, N. and Rahmayetty, A. (2020) Development of polylactic acid (PLA) bio-composite films reinforced with bacterial cellulose nanocrystals (BCNC) without any surface modification. Journal of Dispersion Science and Technology, 41(10), 1488–1495. doi:10.1080/01932691.2019.1626739
  • Zhai, W., Ko, Y., Zhu, W., Wong, A. and Park, C. B. (2009) A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO₂. International Journal of Molecular Sciences, 10(12), 5381–5397. doi:10.3390/ijms10125381

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.