905
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Calibration and comparison of two moisture content measurement methods for in situ monitoring of beech laminated veneer lumber

ORCID Icon, ORCID Icon, &
Pages 790-801 | Received 18 Apr 2021, Accepted 19 Jul 2021, Published online: 02 Aug 2021

References

  • Augenstein, M., Dittrich, W. and Goehl, J. (2000) Details für Holzbrücken. In Holzbau Handbuch (Series 1, Part 9, Issue 2) (Bonn: Informationsdienst Holz).
  • Brischke, C., Rapp, A. O., Bayerbach, R., Morsing, N., Fynholm, P. and Welzbacher, C. (2008) Monitoring the “material climate” of wood to predict the potential for decay: Results from in situ measurements on buildings. Building and Environment, 43, 1575–1582.
  • Dietsch, P., Franke, S., Franke, B., Gamper, A. and Winter, S. (2015a) Methods to determine wood moisture content and their applicability in monitoring concepts. Journal of Civil Structural Health Monitoring, 5, 115–127.
  • Dietsch, P., Gamper, A., Merk, M. and Winter, S. (2015b) Monitoring building climate and timber moisture gradient in large-span timber structures. Journal of Civil Structural Health Monitoring, 5, 153–165.
  • Dyken, T. and Kepp, H. (2010) Monitoring the moisture content of timber bridges. In 1st International Conference of Timber Bridges (Lillehammer, Norway), pp. 223–235.
  • EN 350-2 (1994) Durability of Wood and Wood-Based Products – Natural Durability of Solid Wood – Part 2: Guide to Natural Durability and Treatability of Selected Wood Species of Importance in Europe (Brussels: European Committee for Standardization).
  • EN 1995-1-1 (2004) Eurocode 5. Design of Timber Structures – Part 1-1: General – Common Rules and Rules for Buildings (Brussels: European Committee for Standardization).
  • EN 13183-1 (2002) Moisture Content of a Piece of Sawn Timber – Part 1: Determination by Oven Dry Method (Brussels: European Committee for Standardization).
  • EN 13183-2 (2002) Moisture Content of a Piece of Sawn Timber – Part 2: Estimation by Electrical Resistance Method (Brussels: European Committee for Standardization).
  • Franke, B., Franke, S. and Müller, A. (2014) Case studies: Long-term monitoring of timber bridges. Journal of Civil Structural Health Monitoring, 5, 195–202.
  • Franke, B., Franke, S., Schiere, M. and Müller, A. (2019) Quality Assurance of Timber Structures – Research Report (Bern University of Applied Sciences). ISBN 978-3-906878-04-1).
  • Forsén, H. and Tarvainen, V. (2000) Accuracy and Functionality of Hand-Held Wood Moisture Content Meters. Technical Research Centre of Finland, VTT Publications 420 (Espoo).
  • Fortino, S., Hradil, P., Genoese, A., Genoese, A., Pousette, A. and Fjellström, P. A. (2016) A multi-Fickian hygro-thermal model for timber bridge elements under Northern European climates. WCTE 2016 Conference Proceedings (Vienna, Austria).
  • Fredriksson, M., Claesson, J. and Wadsö, L. (2015) The influence of specimen size and distance to a surface on resistive moisture content measurements in wood. Mathematical Problems in Engineering, 2015, Article ID 215758.
  • Grönquist, P., Weibel, G., Leyder, C. and Frangi, A. (2021) Calibration of electrical resistance to moisture content for beech laminated veneer lumber “BauBuche S” and “BauBuche Q”. MDPI Forests, 12, 635.
  • ISO 12571 (2013) Hygrothermal Performance of Building Materials and Products – Determination of Hygroscopic Sorption Properties. International Organization for Standardization.
  • Jiang, Y., Dietsch, P. and Winter, S. (2016) Agricultural buildings with timber structure – preventative chemical wood preservation inevitably required? WCTE 2016 Conference Proceedings, Vienna, Austria.
  • Kehl, D. (2013) Feuchtetechnische Bemessung von Holzkonstruktionen nach WTA. HOLZBAU, 6, 24–28.
  • Kelsey, K. (1957) Sorption of water vapour by wood. Australian Journal of Applied Sciences, 8, 42–54.
  • Keylwerth, R. and Noack, D. (1964) Kammertrocknung von Schnittholz. Holz als Roh- und Werkstoff, 22, 29–36.
  • Li, H., Perrin, M., Eyma, F., Jacob, X. and Gibiat, V. (2018) Moisture content monitoring in glulam structures by embedded sensors via electrical methods. Wood Science and Technology, 52, 733–752.
  • Mahnert, K. and Hundhausen, U. (2018) A review on the protection of timber bridges. Wood Material Science & Engineering, 13, 152–158.
  • Melin, C., Gebäck, T., Heintz, A. and Bjurman, J. (2016) Monitoring dynamic moisture gradients in wood using inserted relative humidity and temperature sensors. e-Preservation Science, 13, 7–14. 1581-9280 (eISSN).
  • Niklewski, J. (2018) Durability of timber members: Moisture conditions and service life assessment of bridge detailing. Dissertation Lund University, Sweden.
  • Patera, A., Derluyn, H., Derome, D. and Carmeliet, J. (2016) Influence of moisture hysteresis on moisture transport in wood. Wood Science and Technology, 50, 259–283.
  • Pollmeier (2021a) Beispiele für die Anwendung der BauBuche im Holzbau. Accessed 9 March 2021, available at: https://www.pollmeier.com/de/referenzen.html.
  • Pollmeier (2021b) Baubuche, Bauphysik 03, Accessed 9 March 2021, available at: https://www.pollmeier.com/de/downloads-im-ueberblick.
  • Rijsdijk, J. and Laming, P. (1994) Physical and Related Properties of 145 Timbers (Dordrecht: Spinger).
  • Rode, C. and Clorius, C. (2004) Modelling of moisture transport in wood with hysteresis and temperature dependent sorption characteristics. In Performance of Exterior Envelopes of Whole Buildings, IX: International Conference, Oak Ridge, TN, USA.
  • Sandberg, D. and Navi, P. (2007) Introduction to Thermo-Hydro-Mechanical Wood Processing. School of Technology and Design Reports No. 30 (Växjö: Växjö University).
  • Schiere, M., Bosman, T., Derbanne, Q., Stambaugh, K. and Drummen, I. (2017) Sectional load effects derived from strain measurements using the modal approach. Marine Structures, 54, 188–209.
  • Seidel, A., Miebach, F. and Osterloff, L. (2019) Entwurf von Holzbrücken. Holzbau Handbuch (Series 1, Part 9, Issue 1) (Bonn: Informationsdienst Holz).
  • Simpson, W. (1973) Predicting equilibrium moisture content of wood by mathematical models. Wood and Fiber Science, 5, 41–49.
  • Skaar, C. (1988) Wood-Water Relations (Berlin: Springer Verlag). ISBN 3-540-19258-1.
  • Steige, Y. and Frese, M. (2019) Study on a newly developed diagonal connection for hybrid timber trusses made of spruce glulam and beech laminated veneer lumber. Wood Material Science & Engineering, 14, 280–290.
  • Staldemann, W. (1990) Holzbrücken in der Schweiz: ein Inventar (Chur: Verlag Bündner Monatsblatt). ISBN: 3-905241-04-8.
  • Tschuck, P. and Schmid, E. (2012) Holzfeuchtemessung mittels Widerstandsmethode, Projektarbeit 5. Semester, Berner Fachhochschule Biel, Projektarbeit Nr. H/M12/759/12/0.
  • Wenker, J. and Welling, J. (2017) Klimaversuche für den Baustelleneinsatz, Bauen mit Holz (Köln: Bruderverlag Albert Bruder GmbH & Co. KG).