239
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of the time-moisture and time-temperature equivalences in the creep properties of Chinese fir

, , , , ORCID Icon &
Pages 911-917 | Received 13 Jul 2021, Accepted 31 Aug 2021, Published online: 19 Sep 2021

References

  • Arévalo, R. and Hernández, R. E. (2001) Influence of moisture sorption on swelling of mahogany (Swietenia macrophylla King) wood. Holzforschung, 55(6), 590–594.
  • Bodig, J. and Jayne, B. (1982) Mechanics of Wood and Wood Composites (New York: Von Nostrand Reinhold Company).
  • Bond, B. H., Loferski, J., Tissaoui, J. and Holzer, S. (1997) Development of tension and compression creep models for wood using the time-temperature superposition principle. Forest Products Journal, 47(1), 97–103.
  • Cao, J. and Zhao, G. (2001) Dielectric relaxation based on adsorbed water in wood cell wall under non-equilibrium state 2. Holzforschung, 55, 87–92.
  • Chang, F.-C., Lam, F. and Kadla, J. F. (2013) Using master curves based on time–temperature superposition principle to predict creep strains of wood–plastic composites. Wood Science and Technology, 47(3), 571–584.
  • Chowdhury, S. and Frazier, C. E. (2013) Thermorheological complexity and fragility in plasticized lignocellulose. Biomacromolecules, 14(4), 1166–1173.
  • Cramer, C., De, S. and Schönhoff, M. (2011) Time-humidity-superposition principle in electrical conductivity spectra of ion-conducting polymers. Physical Review Letters, 107(2), 028301.
  • Dlouha, J., Clair, B., Arnould, O., Horáček, P. and Gril, J. (2009) On the time-temperature equivalency in green wood: Characterisation of viscoelastic properties in longitudinal direction. Holzforschung, 63(3), 327–333.
  • Engelund, E. T. and Salmén, L. (2012) Tensile creep and recovery of Norway spruce influenced by temperature and moisture. Holzforschung, 66(8), 959–965.
  • Engelund, E. T. and Svensson, S. (2011) Modelling time-dependent mechanical behaviour of softwood using deformation kinetics. Holzforschung, 65(2), 231–237.
  • Engelund, E. T., Thygesen, L. G., Svensson, S. and Hill, C. A. S. (2013) A critical discussion of the physics of wood–water interactions. Wood Science and Technology, 47(1), 141–161.
  • Ferry, J. D. (1980) Viscoelastic Properties of Polymers (3rd edn). (New York: Wiley).
  • Grossman, P. (1976) Requirements for a model that exhibits mechano-sorptive behaviour. Wood Science and Technology, 10(3), 163–168.
  • Hsieh, T.-Y. and Chang, F.-C. (2018) Effects of moisture content and temperature on wood creep. Holzforschung, 72(12), 1071–1078.
  • Ishisaka, A. and Kawagoe, M. (2004) Examination of the time-water content superposition on the dynamic viscoelasticity of moistened polyamide 6 and epoxy. Journal of Applied Polymer Science, 93(2), 560–567.
  • Li, Y., Luo, Y. and Peng, W. (2018) Effect of hydrothermal aging on creep properties of resin reinforced bioboard and its time-stress equivalence. Journal of Forestry Engineering, 8, 122–128.
  • Lu, J., Peng, H., Cao, J., Jiang, J., Zhao, R. and Gao, Y. (2018) Application of dynamic mechanical analysis in wood science research. Journal of Forestry Engineering, 3(5), 1–11.
  • Maiti, A. (2016) A geometry-based approach to determining time-temperature superposition shifts in aging experiments. Rheologica Acta, 55(1), 83–90.
  • Maksimov, R. D., Mochalov, V. P. and Urzhumtsev, Y. S. (1972) Time — Moisture superposition. Polymer Mechanics, 8(5), 685–689.
  • Navi, P., Pittet, V. and Plummer, C. J. G. (2002) Transient moisture effects on wood creep. Wood Science and Technology, 36(6), 447–462.
  • Navi, P. and Stanzl-Tschegg, S. (2009) Micromechanics of creep and relaxation of wood. A review COST Action E 35 2004–2008: wood machining–micromechanics and fracture. Holzforschung, 63(2), 186–195.
  • Olsson, A. M. and Salmén, L. (2001) Molecular mechanisms involved in creep phenomena of paper. Journal of Applied Polymer Science, 79(9), 1590–1595.
  • Onogi, S., Sasaguri, K., Adachi, T. and Ogihara, S. (1962) Time–humidity superposition in some crystalline polymers. Journal of Polymer Science Part A Polymer Chemistry, 58(166), 1–17.
  • Peng, H., Jiang, J., Lu, J. and Cao, J. (2019) Orthotropic mechano-sorptive creep behavior of Chinese fir during the moisture adsorption process determined in tensile mode via dynamic mechanical analysis (DMA). Holzforschung, 73(3), 229–239.
  • Peng, H., Salmén, L., Jiang, J. and Lu, J. (2020) Creep properties of compression wood fibers. Wood Science and Technology, 54(6), 1497–1510.
  • Placet, V., Passard, J. and Perré, P. (2007) Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0–95 C: hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung, 61(5), 548–557.
  • Placet, V., Passard, J. and Perré, P. (2008) Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135 C: evidence of thermal degradation. Journal of Materials Science, 43(9), 3210–3217.
  • Pulngern, T., Chitsamran, T., Chucheepsakul, S., Rosarpitak, V., Patcharaphun, S. and Sombatsompop, N. (2016) Effect of temperature on mechanical properties and creep responses for wood/PVC composites. Construction and Building Materials, 111, 191–198.
  • Salmén, L. (1984) Viscoelastic properties ofin situ lignin under water-saturated conditions. Journal of Materials Science, 19(9), 3090–3096.
  • Salmén, L. (2015) Wood morphology and properties from molecular perspectives. Annals of Forest Science, 72(6), 679–684.
  • Salmén, L. and Olsson, A.-M. (2016) Physical properties of cellulosic materials related to moisture changes. Wood Science and Technology, 50(1), 81–89.
  • Samarasinghe, S., Loferski, J. R. and Holzer, S. M. (2007) Creep modeling of wood using time-temperature superposition. Wood and Fiber Science, 26(1), 122–130.
  • Sandberg, D., Haller, P. and Navi, P. (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science & Engineering, 8(1), 64–88.
  • Sandberg, D., Kutnar, A. and Mantanis, G. (2017) Wood modification technologies-a review. Iforest-Biogeosciences and Forestry, 10(6), 895–908.
  • Sun, N. and Frazier, C. E. (2007) Time/temperature equivalence in the dry wood creep response. Holzforschung, 61(6), 702–706.
  • Tajvidi, M., Falk, R. H. and Hermanson, J. C. (2005) Time–temperature superposition principle applied to a kenaf-fiber/high-density polyethylene composite. Journal of Applied Polymer Science, 97(5), 1995–2004.
  • Wang, F., Huang, T. and Shao, Z. (2017) Application of TTSP to wood-development of a vertical shift factor. Holzforschung, 71(1), 51–55.
  • Williams, M. L., Landel, R. F. and Ferry, J. D. (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77(14), 3701–3707.
  • Yang, T.-C., Wu, T.-L., Hung, K.-C., Chen, Y.-L. and Wu, J.-H. (2015) Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly(lactic acid) composites using the time–temperature superposition principle. Construction and Building Materials, 93, 558–563.
  • Zhan, T., Jiang, J., Lu, J., Zhang, Y. and Chang, J. (2019) Temperature-humidity-time equivalence and relaxation in dynamic viscoelastic response of Chinese fir wood. Construction and Building Materials, 227, 116637.
  • Zhou, S. M., Tashiro, K. and Ii, T. (2001) Confirmation of universality of time–humidity superposition principle for various water-absorbable polymers through dynamic viscoelastic measurements under controlled conditions of relative humidity and temperature. Journal of Polymer Science Part B: Polymer Physics, 39(14), 1638–1650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.