201
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Biological durability of particleboard: fungicidal properties of Ag and Cu nanoparticles against Trametes versicolor white-rot fungus

ORCID Icon, , , , &
Pages 929-936 | Received 13 Jun 2021, Accepted 04 Sep 2021, Published online: 26 Sep 2021

References

  • Ahmad, T., Wani, I. A., Manzoor, N., Ahmed, J. and Asiri, A. M. (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 107, 227–234. doi:10.1016/j.colsurfb.2013.02.004
  • Akhtari, M. and Ganjipour, M. (2013) M. effect of nano-silver and nano-copper and nano zinc oxide on Paulownia wood exposed to white rot fungus. Agricultural Science Development, 2, 116–119.
  • Bak, M. and Németh, R. (2018) Effect of different nanoparticle treatments on the decay resistance of wood. BioResources, 13(4), 7886–7899.
  • Barberia-Roque, L., Gámez-Espinosa, E., Viera, M. and Bellotti, N. (2019) Assessment of three plant extracts to obtain silver nanoparticles as alternative additives to control biodeterioration of coatings. International Biodeterioration & Biodegradation, 141, 52–61. doi:10.1016/j.ibiod.2018.06.011
  • Barngrover, B. M. and Aikens, C. M. (2011) Incremental binding energies of gold (I) and silver (I) thiolate clusters. The Journal of Physical Chemistry A, 115, 11818–11823. doi:10.1021/jp2061893
  • Borges, C. C., Tonoli, G. H. D., Cruz, T. M., Duarte, P. J. and Junqueira, T. A. (2018) Nanoparticles-based wood preservatives: The next generation of wood protection. Cerne, 24, 397–407. doi:10.1590/01047760201824042531
  • Borges, C.C. (2019) Performance of zinc oxide and titanium dioxide on wood protection. Thesis (PhD), Federal University of Lavras.
  • Can, A., Palanti, S., Sivrikaya, H., Hazer, B. and Stefanı, F. (2019) Physical, biological and chemical characterisation of wood treated with silver nanoparticles. Cellulose, 26, 5075–5084. doi:10.1007/s10570-019-02416-x
  • Can, A., Sivrikaya, H. and Hazer, B. (2018) Fungal inhibition and chemical characterization of wood treated with novel polystyrene-soybean oil copolymer containing silver nanoparticles. International Biodeterioration & Biodegradation, 133, 210–215. doi:10.1016/j.ibiod.2018.06.022
  • Casado-Sanz, M. M., Silva-Castro, I., Ponce-Herrero, L., Martín-Ramos, P., Martín-Gil, J. and Acuña-Rello, L. (2019) White-rot fungi control on populus spp. wood by pressure treatments with silver nanoparticles, chitosan oligomers and propolis. Forests, 10, 885–895. doi:10.3390/f10100885
  • Chopkar, M., Sudarshan, S., Das, P. and Manna, I. (2008) Effect of particle size on thermal conductivity of nanofluid. Metallurgical and Materials Transactions A, 39, 1535–1542. doi:10.1007/s11661-007-9444-7
  • Dastjerdi, R. and Montazer, M. (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79, 5–18. doi:10.1016/j.colsurfb.2010.03.029
  • European standard 310 (1993) Wood-based Panels-Determination of Modulus of Elasticity in Bending and of Bending Strength (Newark: BSI Group).
  • European standard 317 (1993) Particleboards and Fiberboards-Determination of Swelling in Thickness After Immersion in Water (Newark: BSI Group).
  • European standard 319 (1993) Particleboards and Fiberboards-Determination of Tensile Strength Perpendicular to the Plane of the Board (Newark: BSI Group).
  • European standard 323 (1993) Wood-based Panels-Determination of Density (Newark: BSI Group).
  • European standard 326-1 (1994) Wood-based Panels-Sampling, Cutting and Inspection (Newark: BSI Group).
  • European standard 350 (1994) Durability of Wood and Wood-Based Products. Natural Durability of Solid Wood. Guide to the Principles of Testing and Classification of Natural Durability of Wood (Newark: BSI Group).
  • European standard 113 (1997) Wood Preservatives-Test Method for Determining the Protective Effectiveness Against Wood Destroying Basidiomycetes-Determination of the Toxic Values (Newark: BSI Group).
  • Farajallahpour, M. and Doosthoseini, K. (2012) Effect of mat moisture content and Cu nanoparticles on heat transfer and physical and mechanical properties of poplar particleboard. Iranian Journal of Wood and Paper Science Research, 27, 348–360.
  • Farajallahpour, M., Doosthoseini, K., Layeghi, M. and Kargarfard, A. (2012) Ag nanoparticles effects on heat transfer in press cycle and physical and mechanical properties of particleboard. Journal of Forest and Wood Products, 65(3), 339–349.
  • Freeman, M. H. and McIntyre, C. R. (2008) Copper-based wood preservatives. Forest Products Journal, 58, 6–27.
  • Gerullis, S., Pfuch, A., Spange, S., Kettner, F., Plaschkies, K., Küzün, B., Kosmachev, P. V., Volokitin, G. G. and Grünler, B. (2018) Thin antimicrobial silver, copper or zinc containing SiO x films on wood polymer composites (WPC) applied by atmospheric pressure plasma chemical vapour deposition (APCVD) and sol–gel technology. European Journal of Wood and Wood Products, 76, 229–241. doi:10.1007/s00107-017-1220-9
  • Holy, S., Temiz, A., Köse Demirel, G., Aslan, M. and Mohamad Amini, M. H. (2020) Physical properties, thermal and fungal resistance of Scots pine wood treated with nano-clay and several metal-oxides nanoparticles. Wood Material Science & Engineering, 23, 1–10. doi:10.1080/17480272.2020.1836023
  • Kailasa, S. K., Park, T.-J., Rohit, J. V. and Koduru, J. R. (2019) Antimicrobial activity of silver nanoparticles. In Nanoparticles in Pharmacotherapy (Norwich, NY: William Andrew Publishing), pp. 461–484. doi:10.1016/B978-0-12-816504-1.00009-0.
  • Kamdem, D. P., Pascal, N., Herman, D. and Shu, Z. (2018) Biological performance of a formulation containing water-dispersible copper naphthenate and sodium fluoride against decay fungi. Wood Material Science & Engineering, 15, 1–8. doi:10.1080/17480272.2018.1463290
  • Karunasekera, H., Pettersson, J., Mi, J., Bergquist, J. and Daniel, G. (2019) Copper tolerance of the soft-rot fungus phialophora malorum grown in-vitro revealed by microscopy and global protein expression. International Biodeterioration & Biodegradation, 137, 147–152. doi:10.1016/j.ibiod.2018.12.001
  • Kim, K.-J., Sung, W. S., Suh, B. K., Moon, S.-K., Choi, J.-S., Kim, J. G. and Lee, D. G. (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 22, 235–242. doi:10.1007/s10534-008-9159-2
  • Kvítek, L., Panáček, A., Soukupova, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M. and Zbořil, R. (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). The Journal of Physical Chemistry C, 112, 5825–5834. doi:10.1021/jp711616v
  • Liu, M., Zhong, H., Ma, E. and Liu, R. (2018) Resistance to fungal decay of paraffin wax emulsion/copper azole compound system treated wood. International Biodeterioration & Biodegradation, 129, 61–66. doi:10.1016/j.ibiod.2018.01.005
  • Narayanan, K. B. and Park, H. H. (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. European Journal of Plant Pathology, 140, 185–192. doi:10.1007/s10658-014-0399-4
  • Noll, M., Buettner, C. and Lasota, S. (2019) Copper containing wood preservatives shifted bacterial and fungal community compositions in pine sapwood in two field sites. International Biodeterioration & Biodegradation, 142, 26–35. doi:10.1016/j.ibiod.2019.04.007
  • Nosal, E. and Reinprecht, L. (2018) Preparation and application of silver and zinc oxide nanoparticles in wood industry: The review. Acta Facultatis Xylologiae Zvolen res Publica Slovaca, 60, 5–23. doi: 10.17423/afx.2018.60.2.01
  • Oussou-Azo, A. F., Nakama, T., Nakamura, M., Futagami, T. and Vestergaard, M. D. C. M. (2020) Antifungal potential of nanostructured crystalline copper and its oxide forms. Nanomaterials, 10, 1003–1026. doi:10.3390/nano10051003
  • Pařil, P., Baar, J., Čermák, P., Rademacher, P., Prucek, R., Sivera, M. and Panáček, A. (2017) Antifungal effects of copper and silver nanoparticles against white and brown-rot fungi. Journal of Materials Science, 52, 2720–2729. doi:10.1007/s10853-016-0565-5
  • Pham, N.-D., Duong, M.-M., Le, M.-V. and Hoang, H. A. (2019) Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici. Comptes Rendus Chimie, 22, 786–793. doi:10.1016/j.crci.2019.10.007
  • Rai, M., Yadav, A. and Gade, A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83. doi:10.1016/j.biotechadv.2008.09.002
  • Shiny, K., Nair, S., Mamatha, N. and Sundararaj, R. (2021) Decay resistance of wood treated with copper oxide nanoparticles synthesised using leaf extracts of Lantana camara L. and Nerium oleander L. Wood Material Science & Engineering, 2, 1–7. doi:10.1080/17480272.2018.1463290
  • Taghiyari, H. R., Esmailpour, A., Majidi, R., Hassani, V., Mirzaei, R. A., Bibalan, O. F. and Papadopoulos, A. N. (2020) The effect of silver and copper nanoparticles as resin fillers on less-studied properties of UF-based particleboards. Wood Material Science & Engineering, 24, 1–11. doi:10.1080/17480272.2020.1847186
  • Tang, K., Wang, X., Yan, W., Yu, J. and Xu, R. (2006) Fabrication of superhydrophilic Cu2O and CuO membranes. Journal of Membrane Science, 286, 279–284. doi:10.1016/j.memsci.2006.10.005
  • Terzi, E., Kartal, S. N., Yılgör, N., Rautkari, L. and Yoshimura, T. (2016) Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. International Biodeterioration & Biodegradation, 107, 77–87. doi:10.1016/j.ibiod.2015.11.010
  • Xiao, J., Chu, Y., Zhuo, Y. and Dong, L. (2009) Amphiphilic molecule controlled synthesis of CuO nano/micro-superstructure film with hydrophilicity and superhydrophilicity surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352, 18–23. doi:10.1016/j.colsurfa.2009.09.042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.