894
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The role of geometry precision in frequency-resonance method for non-destructive wood assessment – numerical case study on sugar maple

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 792-800 | Received 14 Jan 2022, Accepted 25 Apr 2022, Published online: 20 May 2022

References

  • Baar, J., Tippner, J. and Gryc, V. (2012) The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method. European Journal of Wood and Wood Products, 70(5), 767–769.
  • Brancheriau, L. and Bailléres, H. (2002) Natural vibration analysis of clear wooden beams: A theoretical review. Wood Science and Technology, 36, 347–365.
  • Brancheriau, L., Baillères, H., Détienne, P., Kronland, R. and Metzger, B. (2006) Classifying xylophone bar materials by perceptual, signal processing and wood anatomy analysis. Annals of Forest Science, 63, 73–81.
  • Brémaud, I., Kaim, E. Y., Guibal, D., Minato, K., Thibaut, B. and Gril, J. (2012) Characterization and categorization of the diversity of viscoelastic vibrational properties between 98 wood types. Annals of Forest Science, 69, 373–386.
  • Bucur, V. (1995) Acoustic of Wood (New York: CRC Press).
  • Bucur, V. and Chivers, R. C. (1991) Acoustic properties and anisotropy of some Australian wood species. Acoustica, 75, 69–75.
  • Chauhan, S. S. and Walker, J. C. F. (2006) Variations in acoustic velocity and density with age, and their interrelationships in radiata pine. Forest Ecology and Management, 229, 388–394.
  • Dargahi, M., Newson, T. and Moore, J. R. (2020) A numerical approach to estimate natural frequency of trees with variable properties. Forests, 11(9), 915.
  • Divos, F. and Tanaka, T. (2005) Relation between static and dynamic modulus of elasticity of wood. Acta Silvatica & Lignaria Hungarica, 1, 105–110.
  • Evans, R. and Ilic, J. (2001) Rapid prediction of wood stiffness from microfibril angle and density. Forest Products Journal, 51, 53–57.
  • Gerhards, C. C. (1982) Longitudinal stress waves for lumber stress grading: factors affecting applications: state of the art. Forest Products Journal, 32, 20–25.
  • Grabianowski, M., Manley, B. and Walker, J. C. F. (2006) Acoustic measurements on standing trees, logs and green lumber. Wood Science Technology, 40(3), 205–216.
  • Haines, D. W., Leban, J. M. and Herbe, C. (1996) Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Science and Technology, 30(4), 253–265.
  • Halabe, U. B., Bidigalu, G. M., GangaRao, H. V. S. and Ross, R. J. (1997) Nondestructive evaluation of green wood using stress wave and transverse vibration techniques. Materials Evaluation, 55(9), 1013–1018.
  • Hassan, K. T. S., Horáček, P. and Tippner, J. (2013) Evaluation of stiffness and strength of Scots pine wood using resonance frequency and ultrasonic techniques. Bioresources, 8(2), 1634–1645.
  • Hori, R., Müller, M., Watanabe, U., Lichtenegger, H. C., Fratzl, P. and Sugiyama, J. (2002) The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties. Journal of Materials Science, 37, 4279–4284.
  • Ilic, J. (2003) Dynamic MOE of 55 species using small wood beams. Holz als Roh- und Werkstoff, 61, 167–172.
  • Kretschmann, D. E. (2010) Mechanical properties of wood. In R. J. Ross (ed.) Centennial ed. Wood Handbook: Wood as an Engineering Material (Madison, WI: General technical report FPL; GTR-190. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory), pp. 5.1–5.46.
  • Legg, M. and Bradley, S. (2016) Measurement of stiffness of standing trees and felled logs using acoustics: A review. The Journal of Acoustical Society of America, 139(2), 588–604.
  • Lindström, H., Harris, P. and Nakada, R. (2002) Methods for measuring stiffness of young trees. Holz als Roh- und Werkstoff, 60, 165–174.
  • Liu, Z., Liu, Y., Yu, H. and Juan, J. (2006) Measurement of the dynamic modulus of elasticity of wood panels. Frontiers of Forestry in China, 1(4), 245–430.
  • Liu, F., Wang, X., Zhang, H., Jiang, F., Yu, W., Liang, S., Fu, F. and Ross, R. J. (2020) Acoustic wave propagation in standing trees – part 1. numerical simulation. Wood and Fiber Science, 52(1), 53–72.
  • Liu, F., Zhang, H., Wang, X., Jiang, F., Yu, W. and Ross, R. J. (2021) Acoustic wave propagation in standing trees – part II. effects of tree diameter and juvenile wood. Wood and Fiber Science, 53(2), 95–108.
  • Machado, J., Palma, P. and Simões, S. (2009) Ultrasonic indirect method for evaluating clear wood strength and stiffness. Proceedings of the 7th International Symposium on Non-Destructive Testing in Civil Engineering, 969–974.
  • Mishiro, A. (1996) Effect of density on ultrasound velocity in wood. Mokuzai Gakkaishi, 42, 887–894.
  • Mora, C. R., Schimleck, L. R., Isik, F., Mahon, J. M., Clark, A. and Daniels, R. F. (2009) Relationship between acoustic variables and different measures of stiffness in standing Pinus taeda trees. Canadian Journal of Research, 39(8), 1421–1429.
  • Mvolo, C. S., Stewart, J. D. and Koubaa, A. (2021) Comparison between static modulus of elasticity, non-destructive testing moduli of elasticity and stress-wave speed in white spruce and lodgepole pine wood. Wood Material Science & Engineering, 1–11.
  • Oliveira, F. G. R. and de Sales, A. (2006) Relationship between density and ultrasound velocity in Brazilian tropical woods. Bioresource Technology, 97, 2443–2446.
  • Ono, T. and Norimoto, M. (1983) Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Japanese Journal of Applied Physics, 22, 611–614.
  • Ono, T. and Norimoto, M. (1985) Anisotropy of dynamic Young’s modulus and internal friction in wood. Japanese Journal of Applied Physics, 24, 960–964.
  • Ravenshorst, G. J. P., van de Kuilen, J. W. G., Brunetti, M. and Crivellaro, A. (2008) Species independent machine stress grading of hardwoods. Proceedings 10th world conference timber engineering (pp. 158–165).
  • Ross, J. R., Brashaw, K. B., Wang, X., White, H. R. and Pellerin, F. R. (2004) Wood and timber condition assessment manual. Forest Products Society, Madison, 93 p.
  • Sales, A., Candian, M. and Cardin, V. S. (2011) Evaluation of the mechanical properties of Brazilian lumber (Goupia Glabra) by nondestructive techniques. Construction and Building Materials, 25(3), 1450–1454.
  • Smulski, S. J. (1991) Relationship of stress wave-and static bending determined properties of four northeastern hardwoods. Wood and Fiber Science, 23(1), 44–57.
  • Taniwaki, M., Akimoto, H., Hanada, T., Tohro, M. and Sakurai, N. (2007) Improved methodology of measuring moisture content of wood by a vibrational technique. Wood Material Science & Engineering, 2(2), 77–82.
  • Unterwieser, H. and Schickhofer, G. (2011) Influence of moisture content of wood sound velocity and dynamic MOE of natural frequency and ultrasound runtime measurement. European Journal of Wood Products, 69(2), 171–181.
  • Vojáčková, B., Tippner, J., Horáček, P., Sebera, V., Praus, L., Mařík, R. and Brabec, M. (2021) The effect of stem and root-plate defects on the tree response during static loading - numerical analysis. Urban Forestry & Urban Greening, 59, 127002.
  • Wang, S. Y., Lin, C. J. and Chiu, C. M. (2003) The adjusted dynamic modulus of elasticity above the fiber saturation point in taiwanian plantation wood by ultrasonic-wave measurement. Holzforschung, 57(5), 574–552.
  • Wang, X., Ross, R. J., Brashaw, B. K., Punches, J., Erickson, J. R., Forsman, J. W. and Pellerin, R. (2004) Diameter effect on stress-wave evaluation of modulus of elasticity of logs. Wood and Fiber Science, 36(3), 368–377.
  • Wang, X., Ross, R. J. and Carter, P. (2007) Acoustic evaluation of wood quality in standing trees. Part I. Acoustic Wave Behavior. Wood and Fiber Science, 39(1), 28–38.
  • Wang, S. Y., Chen, J. H., Tsai, M. J., Lin, C. J. and Yang, T. H. (2008) Grading of softwood lumber using nondestructive techniques. Journal of Materials Processing Technology, 208(1–3), 149–158.
  • Wang, X. (2013) Acoustic measurements on trees and logs: A review and analysis. Wood Science and Technology, 47(5), 965–997.
  • Yang, J. L. and Evans, R. (2003) Prediction of MOE of eucalypt wood from microfibril angle and density. Holz als Roh- und Werkstoff, 61, 449–452.
  • Yang, J. L., Ilic, J. and Wardlaw, T. (2002) Relationships between static and dynamic modulus of elasticity for a mixture of clear and decayed eucalypt wood. Australian Forestry, 66(3), 193–196.
  • Zahedi, M., Najafi, S. K., Füssl, J. and Elyasi, M. (2021) Determining elastic constants of poplar wood (Populus deltoides) by ultrasonic waves and its application in the finite element analysis. Wood Material Science & Engineering, 1–11.