1,196
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Measured and perceived indoor air quality in three low-energy wooden test buildings

ORCID Icon, , & ORCID Icon
Pages 827-840 | Received 17 Jan 2022, Accepted 11 May 2022, Published online: 24 May 2022

References

  • Adamova, T., Hradecky, J. and Panek, M. (2020) Volatile organic compounds (VOCs) from wood and wood-based panels: methods for evaluation, potential health risks, and mitigation. Polymers, 12(10), 2289.
  • Alapieti, T., Mikkola, R., Pasanen, P. and Salonen, H. (2020) The influence of wooden interior materials on indoor environment: a review. European Journal of Wood and Wood Products, 78(4), 617–634. doi:10.1007/s00107-020-01532-x
  • Berry, T.-A., Chiswell, J. H. D., Wallis, S. L. and Birchmore, R. (2017) The Effect of Airtightness on Indoor Air Quality in Timber Houses in New Zealand. Unitec ePress Occasional and Discussion Paper Series, 9.
  • Campagnolo, D., Saraga, D. E., Cattaneo, A., Spinazzè, A., Mandin, C., Mabilia, R., Perreca, E., Sakellaris, I., Canha, N., Mihucz, V. G., Szigeti, T., Ventura, G., Madureira, J., de Oliveira Fernandes, E., de Kluizenaar, Y., Cornelissen, E., Hänninen, O., Carrer, P., Wolkoff, P., … Bartzis, J. G. (2017) VOCs and aldehydes source identification in European office buildings – The OFFICAIR study. Building and Environment, 115, 18–24. doi:10.1016/j.buildenv.2017.01.009
  • Cao, S.-J., Zhu, D.-H. and Yang, Y.-B. (2016) Associated relationship between ventilation rates and indoor air quality. RSC Advances, 6(112), 111427–111435. doi:10.1039/C6RA22902F
  • Colclough, S., Kinnane, O., Hewitt, N. and Griffiths, P. (2018) Investigation of nZEB social housing built to the Passive House standard. Energy and Buildings, 179, 344–359. doi:10.1016/j.enbuild.2018.06.069
  • Cometto-Muniz, J. and Abraham, M. (2015) Compilation and analysis of types and concentrations of airborne chemicals measured in various indoor and outdoor human environments. Chemosphere, 127, 70–86.
  • Derbez, M., Berthineau, B., Cochet, V., Lethrosne, M., Pignon, C., Riberon, J. and Kirchner, S. (2014a) Indoor air quality and comfort in seven newly built, energy-efficient houses in France. Building and Environment, 72, 173–187. doi:10.1016/j.buildenv.2013.10.017
  • Derbez, M., Berthineau, B., Cochet, V., Pignon, C., Ribéron, J., Wyart, G., Mandin, C. and Kirchner, S. (2014b) A 3-year follow-up of indoor air quality and comfort in two energy-efficient houses. Building and Environment, 82, 288–299. doi:10.1016/j.buildenv.2014.08.028
  • Dimitroulopoulou, C. (2012) Ventilation in European dwellings: A review. Building and Environment, 47, 109–125. doi:10.1016/j.buildenv.2011.07.016
  • Du, L., Leivo, V., Prasauskas, T. T., Täubel, M., Martuzevicius, D. and Haverinen-shaughnessy, U. (2019) Effects of energy retrofits on indoor Air quality in multifamily buildings. Indoor air, 29, 686–697. doi:10.1111/ina.12555
  • Engelmann, P., Roth, K. and Tiefenbeck, V. (2013) Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes. https://digital.library.unt.edu/ark:/67531/metadc834983/.
  • European Commission. (2019) COM(2019) 285 - Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of Region: United in delivering the Energy Union and Climate Action - Setting the foundations for successful clean energy transition In. Brussels, Belgium: European Commission.
  • European Commission. (2020) Agreed EU-LCI values – substances with their established EU-LCI values and summary fact sheets. In. Brussels, Belgium: European Commission.
  • The European Parliament and the Council of the European Union. (2010) DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union, 153(13), 1–23.
  • The European Parliament and the Council of the European Union. (2018) DIRECTIVE (EU) 2018/844 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 May 2018 amending directive 2010/31/EU on the energy performance of buildings and directive 2012/27/EU on energy efficiency. Official Journal of the European Union, 156(75), 1–17.
  • Fang, L., Clausen, G. and Fanger, P. O. (1999) Impact of temperature and humidity on chemical and sensory emissions from building materials. Indoor Air, 9(3), 193–201. doi:10.1111/j.1600-0668.1999.t01-1-00006.x
  • Fischer, A., Langer, S. and Ljungström, E. (2013) Chemistry and indoor air quality in a multi-storey wooden passive (low energy) building: formation of peroxyacetyl nitrate. Indoor and Built Environment, 23(3), 485–496. doi:10.1177/1420326X13487917
  • Földváry, V., Bekö, G., Langer, S., Arrhenius, K. and Petráš, D. (2017) Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia. Building and Environment, 122, 363–372. doi:10.1016/j.buildenv.2017.06.009
  • Geiss, O., Giannopoulos, G., Tirendi, S., Barrero-Moreno, J., Larsen, B. R. and Kotzias, D. (2011) The AIRMEX study - VOC measurements in public buildings and schools/kindergartens in eleven European cities: statistical analysis of the data. Atmospheric Environment, 45(22), 3676–3684. doi:10.1016/j.atmosenv.2011.04.037
  • Haghighat, F. and De Bellis, L. (1998) Material emission rates: Literature review, and the impact of indoor air temperature and relative humidity. Building and Environment, 33(5), 261–277. doi:10.1016/S0360-1323(97)00060-7
  • He, Z., Zhang, Y. and Wei, W. (2012) Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. Building and Environment, 47, 197–204. doi:10.1016/j.buildenv.2011.07.023
  • Hildebrandt, J., Hagemann, N. and Thrän, D. (2017) The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society, 34, 405–418. doi:10.1016/j.scs.2017.06.013
  • Holopainen, R., Salmi, K., Kähkönen, E., Pasanen, P. and Reijula, K. (2015) Primary energy performance and perceived indoor environment quality in Finnish low-energy and conventional houses. Building and Environment, 87, 92–101. doi:10.1016/j.buildenv.2015.01.024
  • Huang, S., Xiong, J., Cai, C., Xu, W. and Zhang, Y. (2016) Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation. Scientific Reports, 6(1), 23388. doi:10.1038/srep23388
  • Ikei, H., Song, C. and Miyazaki, Y. (2016) Effects of olfactory stimulation by α-pinene on autonomic nervous activity. Journal of Wood Science, 62(6), 568–572. doi:10.1007/s10086-016-1576-1
  • Joung, D., Song, C., Ikei, H., Okuda, T., Igarashi, M., Koizumi, H., Park, B. J., Yamaguchi, T., Takagaki, M. and Miyazaki, Y. (2014) Physiological and psychological effects of olfactory stimulation with D-limonene. Advances in Horticultural Science, 28(2), 2094. doi:10.13128/ahs-22808
  • Juntunen, M., Salmela, A., Jalkanen, K., Hovi, H., Wallenius, K. and Hyvärinen, A. (2022) Haihtuvat orgaaniset yhdisteet asunnoissa ­- Pitoisuustasot, yleisimmät yhdisteet ja terveysvaikutukset [In Finnish] (Helsinki, Finland: Finnish Institute for Health and Welfare).
  • Kačík, F., Veľková, V., Šmíra, P., Nasswettrová, A., Kačíková, D. and Reinprecht, L. (2012) Release of terpenes from fir wood during Its long-term Use and in thermal treatment. Molecules, 17(8), 9990–9999. doi:10.3390/molecules17089990
  • Kaunelienė, V., Prasauskas, T., Krugly, E., Stasiulaitienė, I., Čiužas, D., Šeduikytė, L. and Martuzevičius, D. (2016) Indoor air quality in low energy residential buildings in Lithuania. Building and Environment, 108, 63–72. doi:10.1016/j.buildenv.2016.08.018
  • Krol, S., Namiesnik, J. and Zabiegala, B. (2014) a-Pinene, 3-carene and d-limonene in indoor air of Polish apartments: The impact of air quality and human exposure. Science of the Total Environment, 468-469, 985–995.
  • Langer, S., Bekö, G., Bloom, E., Widheden, A. and Ekberg, L. (2015) Indoor air quality in passive and conventional new houses in Sweden. Building and Environment, 93(P1), 92–100. doi:10.1016/j.buildenv.2015.02.004
  • Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J., Moller, S. J., Smith, K. R., Buckley, J. W., Ellis, M., Gillot, S. R. and White, A. (2016) Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discussions, 189, 85–103. doi:10.1039/C5FD00201J
  • Mandin, C., Trantallidi, M., Cattaneo, A., Canha, N., Mihucz, V., Szigeti, T., Mabilia, R., Perreca, E., Spinazze, A., Fossati, S., Kluizenaar, Y., Cornelissen, E., Sakellaris, I., Saraga, D., Hänninne, O., Fernandes, E., Ventura, G., Wolkoff, P., Carrer, P. and Bartzis, J. (2017) Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study. Science of the Total Environment, 579, 169–178.
  • Markowicz, P. and Larsson, L. (2015) Influence of relative humidity on VOC concentrations in indoor air. Environmental Science and Pollution Research International, 22(8), 5772–5779. doi:10.1007/s11356-014-3678-x
  • Ministry of Social Affairs and Health (2015) Decree of the Ministry of Social Affairs and Health on Health-related Conditions of Housing and Other Residential Buildings and Qualification Requirements for Third-party Experts (545/2015). In. Helsinki, Finland: Ministry of Social Affairs and Health.
  • Ministry of the Environment (2011) D2 National building code of Finland: Indoor climate and ventilation of buildings - Regulations and guidelines 2012. In. Helsinki, Finland: Ministry of the Environment - Department of Built Environment.
  • Moran, P., Goggins, J. and Hajdukiewicz, M. (2017) Super-insulate or use renewable technology? Life cycle cost, energy and global warming potential analysis of nearly zero energy buildings (NZEB) in a temperate oceanic climate. Energy and Buildings, 139, 590–607. doi:10.1016/j.enbuild.2017.01.029
  • Moreno-Rangel, A., Sharpe, T., McGill, G. and Musau, F. (2020) Indoor Air quality in passivhaus dwellings: A literature review. International Journal of Environmental Research and Public Health, 17, 13. doi:10.3390/ijerph17134749
  • Nore, K., Nyrud, A. Q., Kraniotis, D., Skulberg, K. R., Englund, F. and Aurlien, T. (2017) Moisture buffering, energy potential, and volatile organic compound emissions of wood exposed to indoor environments. Science & Technology for the Built Environment, 23(3), 512–521. doi:10.1080/23744731.2017.1288503
  • Ortiz, M., Itard, L. and Bluyssen, P. M. (2020) Indoor environmental quality related risk factors with energy-efficient retrofitting of housing: A literature review. Energy and Buildings, 221, 110102. doi:10.1016/j.enbuild.2020.110102
  • Park, J. S. and Ikeda, K. (2006) Variations of formaldehyde and VOC levels during 3 years in new and older homes. Indoor air, 16(2), 129–135. doi:10.1111/j.1600-0668.2005.00408.x
  • Patkó, C., Patkó, I. and Pásztory, Z. (2013) Indoor air quality testing in Low-energy wooden houses: measurement of formaldehyde and VOC-s. Acta Polytechnica Hungarica, 10(8), 106–116. doi:10.12700/APH.10.08.2013.8.6
  • Pohleven, J., Burnard, M. and Kutnar, A. (2019) Volatile organic compounds emitted from untreated and thermally modified wood- A review. Wood and Fiber Science, 51(3), 231–254. doi:10.22382/wfs-2019-023
  • Rohr, A. (2013) The health significance of gas- and particle-phase terpene oxidation products: A review. Environment International, 60, 145–162.
  • Salazar, J. and Meil, J. (2009) Prospects for carbon-neutral housing: the influence of greater wood use on the carbon footprint of a single-family residence. Journal of Cleaner Production, 17, 1563–1571.
  • Schlink, U., Rehwagen, M., Damm, M., Richter, M., Borte, M. and Herbarth, O. (2004) Seasonal cycle of indoor-VOCs: comparison of apartments and cities. Atmospheric Environment, 38(8), 1181–1190. doi:10.1016/j.atmosenv.2003.11.003
  • Spinelle, L., Gerboles, M., Kok, G., Persijn, S. and Sauerwald, T. (2017) Review of portable and Low-cost sensors for the ambient Air monitoring of benzene and other volatile organic compounds. Sensors, 17, 1520. doi:10.3390/s17071520
  • Steckel, V., Welling, J. and Ohlmeyer, M. (2011) Product emissions of volatile organic compounds from convection dried Norway spruce (Picea abies (L. H. Karst.) timber. International Wood Products Journal, 2(2), 75–80. doi:10.1179/2042645311Y.0000000007
  • Suzuki, M., Akitsu, H., Miyamoto, K., Tohmura, S.-I. and Inoue, A. (2014) Effects of time, temperature, and humidity on acetaldehyde emission from wood-based materials. Journal of Wood Science, 60(3), 207–214. doi:10.1007/s10086-014-1397-z
  • Taylor, J., Mavrogianni, A., Davies, M., Das, P., Shrubsole, C., Biddulph, P. and Oikonomou, E. (2015) Understanding and mitigating overheating and indoor PM2.5 risks using coupled temperature and indoor air quality models. Journal of Building Services Engineering Research & Technology, 36(2), 275–289. doi:10.1177/0143624414566474
  • Trantallidi, M., Dimitroulopoulou, W. P., Kephalopoulos, S. and Carrer, P. (2015) EPHECT III: Health risk assessment of exposure to household consumer products. Science of the Total Environment, 536, 903–913.
  • Van der Wal, J. F., Hoogeveen, A. W. and Wouda, P. (1997) The influence of temperature on the emission of volatile organic compounds from PVC flooring, carpet, and paint. Indoor air, 7(3), 215–221. doi:10.1111/j.1600-0668.1997.t01-1-00007.x
  • Wallner, P., Munoz, U., Tappler, P., Wanka, A., Kundi, M., Shelton, J. F. and Hutter, H.-P. (2015) Indoor environmental quality in mechanically ventilated, energy-efficient buildings vs. conventional buildings. International Journal of Environmental Research and Public Health, 12(11), 14132–14147. doi:10.3390/ijerph121114132
  • Wang, C., Barratt, B., Carslaw, N., Doutsi, A., Dunmore, R., Ward, M. and Lewis, A. (2017) Unexpectedly high concentrations of monoterpenes in a study of UK homes. Environmental Science: Processes & Impacts, 19, 528–537.
  • Weschler, C. and Shields, H. (1999) Indoor ozone/terpene reactions as a source of indoor particles. Atmospheric Environment, 33, 2301–2312.
  • Weschler, C. and Shields, H. (2000) The influence of ventilation on reactions among indoor pollutants: modeling and experimental observations. Indoor air, 10, 92–100.
  • Winter, S., Schulte-Wrede, M., & Jebens, K. (2012). Highly insulated wooden structures in Nordic climate. World conference on timber Engineering 2012: Architecture and Engineering case studies, WCTE 2012, Auckland, New Zealand.
  • Wolkoff, P. (1998) Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products. Atmospheric Environment, 32(14), 2659–2668. doi:10.1016/S1352-2310(97)00402-0
  • Wolkoff, P. (2013) Indoor air pollutants in office environments: assessment of comfort, health, and performance. International Journal of Hygiene and Environmental Health, 216, 371–394.
  • Wolkoff, P. (2020) Indoor air chemistry: Terpene reaction products and airway effects. International Journal of Hygiene and Environmental Health, 225, 113439. doi:10.1016/j.ijheh.2019.113439
  • Wolkoff, P., Clausen, P., Wilkings, C. and Nielsen, G. (2000) Formation of strong airway irritants in terpene/ozone mixtures. Indoor air, 10, 82–91.
  • Wolkoff, P. and Nielsen, G. D. (2017) Effects by inhalation of abundant fragrances in indoor air – An overview. Environment International, 101, 96–107.
  • Yang, S., Pernot, J. G., Jörin, C. H., Niculita-Hirzel, H., Perret, V. and Licina, D. (2020) Energy, indoor air quality, occupant behavior, self-reported symptoms and satisfaction in energy-efficient dwellings in Switzerland. Building and Environment, 171, 106618. doi:10.1016/j.buildenv.2019.106618