1,019
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effect of construction features on the dynamic performance of mid-rise CLT platform-type buildings

ORCID Icon, , , &
Pages 261-273 | Received 04 Mar 2022, Accepted 12 May 2022, Published online: 23 May 2022

References

  • Aloisio, A., Boggian, F., Tomasi, R. and Fragiacomo, M. (2021) The role of the hold-down in the capacity model of LTF and CLT shear walls based on the experimental lateral response. Construction and Building Materials, 289, 123046.
  • Aloisio, A. and Fragiacomo, M. (2021) Assessment of the seismic response of CLT shear walls using the EEGBW, a Bouc–Wen class predictive model. Infrastructures, 6, 55. doi:10.3390/infrastructures6040055
  • Aloisio, A., Pasca, D., Tomasi, R. and Fragiacomo, M. (2020) Dynamic identification and model updating of an eight-storey CLT building. Engineering Structures. doi:10.1016/j.engstruct.2020.110593.
  • American National Standards Institute (ANSI) (2012) Standard for Performance Rated Cross-Laminated Timber, Standard ANSI/APA PRG 320-2012 (New York, NY: ANSI), p. 29.
  • American Society of Civil Engineers (2010) Minimum Design Loads for Buildings and Other Structures (ASCE Standard ASCE/SEI 7-10).
  • Aranha, C. A. (2016) Experimental and Numerical Assessment of the Seismic Behaviour of Log and Cross-Laminated Timber Systems (Tech. Rep. Universidade do Minho Escola de Engenharia), p. 205.
  • Buchanan, A. H. (2005) How will timber buildings help New Zealand meet the Kyoto protocol commitments? New Zealand Timber Design Journal, 13(1), 9–13.
  • Ceccotti, A. (2008) New technologies for construction of medium-rise buildings in seismic regions: The XLAM case. Structural Engineering International, 18(2), 156–165.
  • Computers and Structures, Inc. (CSI) (2014) SAP2000 API Documentation, Technical Knowledge (Berkeley, CA: SAP2000 Database).
  • European Commission: Directive of the European Parliament and of the Council (2021) On the Energy Performance of Buildings (Recast). Brussels COM (2021) 802 final 2021/0426 (COD).
  • European Commission: Directorate General-Joint Research Centre. (2006) Urban Sprawl in Europe: The Ignored Challenge. Copenhagen. EEA Report No. 12/2006.
  • European Committee for Standardization (2004a) (2004) EN 1991-1-1 (English): Eurocode 1: Actions on Structures – Part 1-1: General Actions – Densities, Self-Weight, Imposed Loads for Buildings (The European Union).
  • European Committee for Standardization (2004b) (2004) EN 1998-1 (English): Design of Structures for Earthquake Resistance – Part 1: General Rules, Seismic Actions and Rules for Buildings (The European Union).
  • Farsangi, E. N., Bogdanovic, A., Rakicevic, Z. T. and Poposka, A. (2020) Ambient vibration testings and field investigations of two historical buildings in Europe. SDHM Structural Durability and Health Monitoring, 14(4), 283–301. doi:10.32604/sdhm.2020.010564
  • Follesa, M., Christovasilis, I., Vassallo, D., Fragiacomo, M. and Ceccotti, A. (2013) Seismic design of multi-storey clt buildings according to Eurocode 8. Ingegneria sismica. International Journal of Earthquake Engineering, Special Issue on Timber Structures, 30(4), 27–53.
  • Folz, B. and Filiatrault, A. (2004a) Seismic analysis of woodframe structures I: Model formulation. Journal of Structural Engineering, 130, 1353–1360. doi:10.1061/(ASCE)07339445(2004)130:9(1353)
  • Folz, B. and Filiatrault, A. (2004b) Seismic analysis of woodframe structures. II: Model implementation and verification. Journal of Structural Engineering, 130, 1361–1370. doi:10.1061/(ASCE)0733-9445(2004)130:9(1361)
  • Gavric, I., Fragiacomo, M. and Ceccotti, A. (2015) Cyclic behavior of CLT wall systems: Experimental tests and analytical prediction models. Journal of Structural Engineering, 141(11), 04015034.
  • Inel, M., Ozmen, H. B. and Cayci, T. B. (2019) Determination of period of RC buildings by the ambient vibration method. Advances in Civil Engineering. Article ID 1213078. doi:10.1155/2019/1213078
  • International Energy Agency (IEA) for the Global Alliance for Buildings and Construction (GlobalABC). (2019) Global Status Report for Buildings and Construction Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector. ISBN No: 978-92-807-3768-4.
  • IS:1893:2016 (2016) Criteria for Earthquake Resistant Design of Structures. New Delhi: Bureau of Indian Standards. Available at, https://archive.org/details/1893Part1.
  • Izzi, M., Casagrande, D., Bezzi, S., Pasca, D., Follesa, M. and Tomasi, R. (2018) Seismic behaviour of cross-laminated timber structures: a state-of-the-art review. Engineering Structures, 170, 42–52.
  • Mordini, A., Savov, K. and Wenzel, H. (2017) The finite element model updating: A powerful tool for structural health monitoring. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 17(4), 352–358. doi:10.2749/101686607782359010.
  • Mottershead, M. I. and Friswell, J. E. (1995) Finite element model updating in structural dynamics. Solid Mechanics and Its Applications, 38, 282. doi:10.1007/978-94-015-8508-8.
  • Mugabo, I., Barbosa, A. R. and Riggio, M. (2019) Dynamic characterization and vibration analysis of a four-story mass timber building. Frontiers in Built Environment, 5(86). doi:10.3389/fbuil.2019.00086
  • Polastri, A., Izzi, M., Pozza, L., Loss, C. and Smith, I. (2019) Seismic analysis of multi-storey timber buildings braced with a CLT core and perimeter shear-walls. Bulletin of Earthquake Engineering, 17, 1009–1028. doi:10.1007/s10518-018-0467-9.
  • Reynolds, T., Casagrande, D. and Tomasi, R. (2016) Comparison of multi-storey cross laminated timber and timber frame buildings by in situ modal analysis. Construction and Building Materials, 102, 1009–1017. doi:10.1016/j.conbuildmat.2015.09.056.
  • Rivera, H. A., Martinez, J. P. and Lozano, J. A. (2015) Translation of SAP2000 Models to Equivalent-Models for Finite Element, Command-Based Softwares, 37–48. ISSN: 2007-5197. https://www.researchgate.net/publication/294736454.
  • Sandoli, A., D’Ambra, C., Ceraldi, C., Calderoni, B. and Prota, A. (2021) Sustainable cross-laminated timber structures in a seismic area: Overview and future trends. Applied Sciences, 11, 2078. doi:10.3390/app11052078
  • Santaella, B. L. and Tseng, Z. J. (2019) Hole in one: An element reduction approach to modeling bone porosity in finite element analysis. PeerJ, 7, e8112. doi:10.7717/peerj.8112
  • Smith, I. and Frangi, A. (2014) Structural Use of Timber in Tall Multi-Storey Buildings. Structural Engineering Document 13. Zurich: International Association for Bridge and Structural Engineering, p. 19.
  • Tannert, T., Follesa, M., Fragiacomo, M., González, P., Isoda, H., Moroder, D., Xiong, H. and van de Lindt, J. W. (2018) Seismic design of cross-laminated timber buildings. Wood and Fiber Science, doi:10.22382/WFS-2018-037. Corpus ID: 73545001.
  • Timoshenko, S. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells (2nd ed.). (New York: McGraw-Hill, Classic Textbook, Re-Issued 1987).
  • Ussher, E. (2017) Vibration Serviceability Design Analysis of Lightweight Timber Slabs. PhD thesis, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, Canada.
  • Van Rossum, G. and Drake, F. L. (2009) Python 3 Reference Manual (Scotts Valley, CA: CreateSpace).
  • Wallner-Novak, M., Koppelhuber, J. and Pock, K. (2014) Cross-Laminated Timber Structural Design. proHolz Austria, p. 191. www.proholz.at.
  • Weckendorf, J., Ussher, E. and Smith, I. (2016) Dynamic response of CLT plate systems in the context of timber and hybrid construction. Composite Structures, 57, 412–423.
  • Worth, M., Gaul, A., Jager, S., Omenzetter, P. and Morris, H. (2012) Dynamic Performance Assessment of a Multi-Storey Timber Building via Ambient and Forced Vibration Testing, Continuous Monitoring and Finite Element Model Updating (Tech. Rep. Department of Civil and Environmental Engineering, The University of Auckland).