222
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of spatial augmented reality assistance on the efficiency of prefabricating timber frame walls

ORCID Icon, ORCID Icon & ORCID Icon
Pages 860-869 | Received 21 Jan 2022, Accepted 31 May 2022, Published online: 10 Jun 2022

References

  • Andrews, C. M., Henry, A. B., Soriano, I. M., Southworth, M. K. and Silva, J. R. (2020) Registration techniques for clinical applications of three-dimensional augmented reality devices. IEEE Journal of Translational Engineering in Health and Medicine, 9, 4900214–4900214. doi:10.1109/JTEHM.2020.3045642
  • Apt, W. B., Marc, Priesack, K., Weiß, C. and Hartmann, E. A. (2018) Einsatz von digitalen Assistenzsystemen im Betrieb. In: ARBEIT, B. F. S. U. (ed.).
  • Autodesk Inc (2011) AutoCAD 2012 DXF Reference. Accessed 02 February 2020, Available at: http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf.
  • Azuma, R. T. (1997) A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6, 355–385. doi:10.1162/pres.1997.6.4.355
  • Bornewasser, M., Bläsing, D. and Hinrichsen, S. (2018) Informatorische Assistenzsysteme in der manuellen montage: Ein nützliches werkzeug zur reduktion mentaler beanspruchung? Zeitschrift für Arbeitswissenschaft, 72, 264–275. doi:10.1007/s41449-018-0123-x
  • Bruehl, M. (2005) Laser template projection for composite assembly. Reinforced Plastics, 49, 56–57. doi:10.1016/S0034-3617(05)70769-4
  • Cuperschmid, A. R., Grachet, M. and Fabrício, M. (2016) Development of an augmented reality environment for the assembly of a precast wood-frame wall using the BIM model. Ambiente Construído, 16, 63–78. doi:10.1590/s1678-86212016000400105
  • Danielsson, O., Holm, M. and Syberfeldt, A. (2020) Augmented reality smart glasses in industrial assembly: current status and future challenges. Journal of Industrial Information Integration, 20, 100175. doi:10.1016/j.jii.2020.100175
  • Doshi, A., Smith, R. T., Thomas, B. H. and Bouras, C. (2017) Use of projector based augmented reality to improve manual spot-welding precision and accuracy for automotive manufacturing. The International Journal of Advanced Manufacturing Technology, 89, 1279–1293. doi:10.1007/s00170-016-9164-5
  • Funk, M., Kosch, T. and Schmidt, A. (2016) Interactive worker assistance: comparing the effects of in-situ projection, head-mounted displays, tablet, and paper instructions. https://doi.org/10.1145/2971648.2971706.
  • Funk, M., Lischke, L., Mayer, S., Shirazi, A. and Schmidt, A. (2018) Teach Me How! Interactive Assembly Instructions Using Demonstration and In-Situ Projection. https://doi.org/10.1007/978-981-10-6404-3_4.
  • Gattullo, M., Scurati, G. W., Fiorentino, M., Uva, A. E., Ferrise, F. and Bordegoni, M. (2019) Towards augmented reality manuals for industry 4.0: a methodology. Robotics and Computer-Integrated Manufacturing, 56, 276–286. doi:10.1016/j.rcim.2018.10.001
  • Google (n.d.) Glass Enterprise Edition 2 Tech Specs. Accessed 15 February 2021. Available at: https://www.google.com/glass/tech-specs/.
  • Hallewell Haslwanter, J. D. and Blazevski, B. (2018) Experiences with an assistive system for manual assembly. ACM International Conference Proceeding Series. 46–49. https://doi.org/10.1145/3197768.3203173.
  • Hart, S. G. (2016) Nasa-Task Load Index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50, 904–908. doi:10.1177/154193120605000909
  • Hart, S. G. S. and Lowell, E. (1988) Development of NASA-TLX (task load index): results of empirical and theoretical research. Human Mental Workload, 139–183. doi:10.1016/S0166-4115(08)62386-9
  • Hinrichsen, S., Riediger, D. and Unrau, A. (2016) Assistance Systems in Manual Assembly.
  • Hold, P., Erol, S., Reisinger, G. and Sihn, W. (2017) Planning and evaluation of digital assistance systems. Procedia Manufacturing, 9, 143–150. doi:10.1016/j.promfg.2017.04.024
  • Hou, L., Wang, X. and Truijens, M. (2015) Using augmented reality to facilitate piping assembly: an experiment-based evaluation. Journal of Computing in Civil Engineering, 29), doi:10.1061/(ASCE)CP.1943-5487.0000344
  • Kurdve, M. (2018) Digital assembly instruction system design with green lean perspective-case study from building module industry. Procedia CIRP, 72, 762–767. doi:10.1016/j.procir.2018.03.118
  • Mark, B. G., Rauch, E. and Matt, D. T. (2021) Worker assistance systems in manufacturing: a review of the state of the art and future directions. Journal of Manufacturing Systems, 59, 228–250. doi:10.1016/j.jmsy.2021.02.017
  • Mengoni, M., Ceccacci, S., Generosi, A. and Leopardi, A. (2018) Spatial augmented reality: an application for human work in smart manufacturing environment. Procedia Manufacturing, 17, 476–483. doi:10.1016/j.promfg.2018.10.072
  • Microsoft (n.d.) HoloLens 2 A new reality for computing. Accessed 16 February 2021, Available at: https://www.microsoft.com/en-us/hololens.
  • Mueller, R., Vette, M., Scholer, M. and Ball, J. (2016) Assembly assistance and position data feedback by means of projection lasers. SAE Technical Paper. https://doi.org/10.4271/2016-01-2107.
  • Neb, A., Brandt, D., Rauhöft, G., Awad, R., Scholz, J. and Bauernhansl, T. (2021) A novel approach to generate augmented reality assembly assistance automatically from CAD models. Procedia CIRP, 104, 68–73. doi:10.1016/j.procir.2021.11.012
  • Oestreich, H., Töniges, T., Wojtynek, M. and Wrede, S. (2019) Interactive learning of assembly processes using digital assistance. Procedia Manufacturing, 31, 14–19. doi:10.1016/j.promfg.2019.03.003
  • Österreichischer Fertighausverband (2019) Pressemappe PK 2019.
  • Österreichisches Normungsinstitut (2005) ÖNORM B 2310, Fertighäuser Begriffsbestimmungen und Mindestleistungsumfang (Vienna).
  • Pedersen, M. (2020) DXFtool. Accessed 02 March 2020, Available at: https://www.mathworks.com/matlabcentral/fileexchange/66632-dxftool.
  • Qeshmy, D. E., Makdisi, J., Ribeiro da Silva, E. H. D. and Angelis, J. (2019) Managing human errors: augmented reality systems as a tool in the quality journey. Procedia Manufacturing, 28, 24–30. doi:10.1016/j.promfg.2018.12.005
  • Quandt, M., Knoke, B., Gorldt, C., Freitag, M. and Thoben, K.-D. (2018) General requirements for industrial augmented reality applications. Procedia CIRP, 72, 1130–1135. doi:10.1016/j.procir.2018.03.061
  • Radkowski, R., Herrema, J. and Oliver, J. (2015) Augmented reality-based manual assembly support with visual features for different degrees of difficulty. International Journal of Human–Computer Interaction, 31, 337–349. doi:10.1080/10447318.2014.994194
  • Statistisches Bundesamt Destatis (2020) Baugenehmigungen, Baufertigstellungen nach der Bauweise - Lange Reihen bis 2019.
  • Stork, S. and Schubö, A. (2010) Human cognition in manual assembly: theories and applications. Advanced Engineering Informatics, 24, 320–328. doi:10.1016/j.aei.2010.05.010
  • Such, M., Ward, C., Hutabarat, W. and Tiwari, A. (2014) Intelligent composite layup by the application of low cost tracking and projection technologies. https://doi.org/10.1016/j.procir.2014.10.020.
  • Tang, A., Owen, C., Biocca, F. and Mou, W. (2003) Comparative effectiveness of augmented reality in object assembly. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2003 Ft. Lauderdale, Florida, USA. Association for Computing Machinery, 73–80. https://doi.org/10.1145/642611.642626.
  • Uva, A. E., Gattullo, M., Manghisi, V. M., Spagnulo, D., Cascella, G. L. and Fiorentino, M. (2018) Evaluating the effectiveness of spatial augmented reality in smart manufacturing: a solution for manual working stations. The International Journal of Advanced Manufacturing Technology, 94, 509–521. doi:10.1007/s00170-017-0846-4
  • Wang, X., Ong, S. K. and Nee, A. Y. C. (2016) A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4, 1–22. doi:10.1007/s40436-015-0131-4
  • Wickens, C. D. (2002) Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3, 159–177. doi:10.1080/14639220210123806
  • Zaeh, M. F., Wiesbeck, M., Stork, S. and Schubö, A. (2009) A multi-dimensional measure for determining the complexity of manual assembly operations. Production Engineering, 3, 489–496. doi:10.1007/s11740-009-0171-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.