198
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of hemicellulose removal combined with polyethylene glycol impregnation on dimensional stability of wood

&
Pages 933-942 | Received 10 May 2022, Accepted 13 Jun 2022, Published online: 01 Aug 2022

References

  • Akpan, E. I., Wetzel, B. and Friedrich, K. (2021) Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 23, 2198–2232. doi:10.1039/d0gc04430j.
  • Bak, M. and Németh, R. (2012) Changes in swelling properties and moisture uptake rate of oil-heat-treated poplar (Populous euramericana Cv. Pannonia) wood. BioResources, 7, 5128–5137. doi:10.15376/biores.7.4.5128-5137.
  • Broda, M. (2018) Biological effectiveness of archaeological oak wood treated with methyltrimethoxysilane and PEG against brown-rot fungi and moulds. International Biodeterioration & Biodegradation, 134, 110–116. doi:10.1016/j.ibiod.2018.09.001.
  • Christensen, G. N. and Kelsey, K. E. (1959) The rate of sorption of water vapor by wood. Holz als Roh- und Werkstoff, 17, 178–188.
  • Ek, M., Gellerstedt, G. and Henriksson, G. (2009) Wood Chemistry and Wood Biotechnology (Berlin: De Gruyter).
  • Engelund, E. T., Thygesen, L. G., Svensson, S. and Hill, C. A. S. (2013) A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 47(1), 141–161. doi:10.1007/s00226-012-0514-7.
  • Ermeydan, M. A. (2018) Modification of spruce wood by uv-crosslinked peg hydrogels inside wood cell walls. Reactive and Functional Polymers, 131, 100–106. doi:10.1016/j.reactfunctpolym.2018.07.013.
  • Fejfer, M., Majka, J. and Zborowska, M. (2020) Dimensional stability of waterlogged Scots pine wood treated with peg and dried using an alternative approach. Forests, 11(12), 1254. doi:10.3390/f11121254.
  • Hailwood, A. J. and Horrobin, S. (1946) Absorption of water by polymers: analysis in terms of a simple model. Transactions of the Faraday Society, 42, 84–92.
  • Hill, C. A. S., Norton, A. and Newman, G. (2009) The water vapor sorption behavior of natural fibers. Journal of Applied Polymer Science, 112, 1524–1537. doi:10.1002/app.29725.
  • Homann, P. (1988) On the stabilization of waterlogged oakwood with polyethylene glycol (PEG). Holzforschung, 42, 289–294.
  • Homann, P. (2013) Conservation of Archeological Ships and Boats (London: Archetype Publications Ltd).
  • Hosseinaei, O., Wang, S., Enayati, A. A. and Rials, T. G. (2012) Effects of hemicelluloses extraction on properties of wood flour and wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 43, 686–694. doi:10.1016/j.compositesa.2012.01.007.
  • Huang, Y. X., Meng, F. D., Liu, R., Yu, Y. L. and Yu, W. J. (2019) Morphology and supramolecular structure characterization of cellulose isolated from heat-treated moso bamboo. Cellulose, 26, 7067–7078.
  • Interactive HTML5 Flipping Book Publishing Platform; Your Universally Applicable Polymer, Clariant (2007) Accessed 10 September 2021, available at https://anyflip.com/rwuf/fuly.
  • Jones, D. and Sandberg, D. (2020) A review of wood modification globally-updated findings from cost fp1407. Ipbe1, 1–31. doi:10.37947/ipbe.2020.vol1.1.
  • Keržič, E. and Humar, M. (2021) Studies on the material resistance and moisture dynamics of wood after artificial and natural weathering. Wood Material Science and Engineering, 1–7. doi:10.1080/17480272.2021.1902388.
  • Klemens, H. K., Abrahamsson, K., Bjrdal, C. and Walsh, A. (2020) An in situ Raman spectroscopic method for quantification of polyethylene glycol (peg) in waterlogged archaeological wood. Holzforschung, 74(11), doi:10.1515/hf-2019-0238.
  • Kulasinski, K., Guyer, R., Keten, S., Derome, D. and Carmeliet, J. (2015) Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules, 48, 2793–2800. doi:10.1021/acs.macromol.5b00248.
  • Li, M. and Wang, C. (2019) Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials. Renewable Energy, 141, 1005–1012.
  • Liu, Z., Wei, H., Tang, B., Xu, S. M. and Zhang, S. F. (2018) Novel light-driven CF/PEG/SiO2 composite phase change materials with high thermal conductivity. Solar Energy Materials & Solar Cells, 174, 538–544.
  • Majka, J., Zborowska, M., Fejfer, M., Waliszewska, B. and Olek, W. (2018) Dimensional stability and hygroscopic properties of peg treated irregularly degraded waterlogged Scots pine wood. Journal of Cultural Heritage, 31, 133–140. doi:10.1016/j.culher.2017.12.002.
  • Macromolecule, A. (1958) Physical Properties of Macromolecules (Tokyo: Kyoritsu Press).
  • Meints, T., Christan, H. and Wolfgang, G. A. (2018) Suitability of different variants of polyethylene glycol impregnation for the dimensional stabilization of oak wood. Polymers, 10(1), 81. doi:10.3390/polym10010081.
  • Mortensen, M. N., Egsgaard, H., Hvilsted, S., Shashoua, Y. and Glastrup, J. (2007) Characterisation of the polyethylene glycol impregnation of the Swedish warship vasa and one of the danish skuldelev viking ships. Journal of Archaeological Science, 34, 1211–1218. doi:10.1016/j.jas.2006.10.012.
  • Müller, U. and Steiner, M. (2010) Colour stabilisation of wood composites using polyethylene glycol and melamine resin. European Journal of Wood and Wood Products, 68(4), 435–443. doi:10.1007/s00107-009-0386-1.
  • Ou, R., Xie, Y., Wolcott, M. P., Sui, S. J. and Wang, Q. W. (2014) Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: effect of removal of wood cell wall composition. Materials & Design, 58, 339–345. doi:10.1016/j.matdes.2014.02.018.
  • Qiu, H. B., Han, Y. M., Fan, D. B., Li, G. Y. and Chu, F. X. (2018) Progress in chemical modification of fast-growing wood. Mater. Rev, 32, 2701–2708. doi:10.13466/j.cnki.lyzygl.2014.01.001.
  • Sahin, C. K. and Onay, B. (2020) Alternative wood species for playgrounds wood from fruit trees. Wood Research, 65, 149–160. doi:10.37763/wr.1336-4561/65.1.149160.
  • Santos, L. M. D., Amaral, E. A., Nieri, E. M., Costa, E. V. S. and Hein, P. R. G. (2020) Estimating wood moisture by near infrared spectroscopy: testing acquisition methods and wood surfaces qualities. Wood Material Science and Engineering, 4, 1–8.
  • Sargent, R. (2019) Evaluating dimensional stability in solid wood: a review of current practice. Journal of Wood Science, 65, 36. doi:10.1186/s10086-019-1817-1.
  • Simpson, W. (1980) Sorption theories applied to wood. Wood and Fiber Science, 12, 183–195.
  • Skaar, C. (1988) Wood-water Relations (Berlin: Springer).
  • Stamm, A. J. (1964) Factors affecting the bulking and dimensional stabilization of wood with polyethylene glycols. Forest Products Journal, 14, 403–408.
  • Thybring, E. E. and Fredriksson, M. (2021) Wood modification as a tool to understand moisture in wood. Forests, 12(3), 372.
  • Ulbricht, J., Jordan, R. and Luxenhofer, R. (2014) On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials, 35(17), 4848–4861. doi:10.1016/j.biomaterials.2014.02.029.
  • Wang, Z. and Wang, X. M. (2014) Research progress of multi-scale pore structure and characterization methods of wood. Scientia Silvae Sinicae, 50(10), 123–133.
  • Xu, J. Q., Yang, T. T., Xu, X., Guo, X. and Cao, J. Z. (2020) Processing solid wood into a composite phase change material for thermal energy storage by introducing silica-stabilized polyethylene glycol. Composites Part A Applied Science and Manufacturing, 139(1), 106098.
  • Yang, T. T., Ma, E. N. and Cao, J. Z. (2019) Synergistic effects of partial hemicellulose removal and furfurylation on improving the dimensional stability of poplar wood tested under dynamic condition. Industrial Crops and Products, 139, 111550. doi:10.1016/j.indcrop.2019.111550.
  • Yang, T. T., Cao, J. Z., Mei, C. T. and Ma, E. N. (2022) Inhibiting wood-water interactions by hydrothermal hemicellulose extraction combined with furfurylation. Holzforschung, 76(3), 245–255. doi:10.1515/hf-2021-0078.
  • Zaihan, J., Hill, C. A. S., Xie, Y. J., Hashim, W. S., Hamdan, H., Khairul, A. and Curling, S. F. (2010) Analysis of the water vapour sorption isotherms of thermally modified acacia and sesendok. Wood Material Science and Engineering, 5, 194–203. doi:10.1080/17480272.2010.503940.
  • Zhou, H. Z., Xu, R. and Ma, E. N. (2016) Effects of removal of chemical components on moisture adsorption by wood. BioResources, 11, 3110–3122. doi:10.15376/biores.11.2.3110-3122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.