218
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Transverse permeability in Eucalyptus nitens wood specimens

, , , &
Pages 1035-1042 | Received 28 Mar 2022, Accepted 13 Jul 2022, Published online: 27 Jul 2022

References

  • Ananías, R. A., Hernández, G. and Vergara, E. (2010) Drying behaviour of second-growth Nothofagus alpina. Maderas. Ciencia y Tecnología, 12(1), 37–42. [In Spanish]. doi:10.4067/S0718-221X2010000100004
  • Ananías, R. A., Sepúlveda, V., Pérez-Peña, N., Torres, J., Salvo, L., Castillo, D. and Salinas, C. (2020) Radio frequency vacuum drying of Eucalyptus nitens juvenile wood. BioResources, 15(3), 4886–4897. doi:10.15376/biores.15.3.4886-4897
  • Ananías, R. A., Sepulveda, V., Perez, N., Leandro, L., Salvo, L., Salinas, C., Cloutier, A. and Elustondo, D. (2014) Collapse of Eucalyptus nitens wood after drying depending on the radial location within the stem. Drying Technology, 32(14), 1699–1705. doi:10.1080/07373937.2014.924132
  • Bao, F., Lu, J. and Avramidis, S. (1999) On the permeability of main wood species in China. Holzforschung, 53, 350–354. doi:10.1515/HF.1999.058
  • Baraúna, E. E. P., Lima, J. T., Vieira, R., Silva, J. R. M. and Monteiro, T. C. (2014) Effect of anatomical and chemical structure in the permeability of “Amapá” wood. Cerne, 20(4), 529–534. doi:10.1590/01047760201420041501
  • Chen, P. Y. S., Zhang, G. and Sambeek, J. W. (1998) Relationships among growth rate, vessel lumen area, and wood permeability for three central hardwood species. Forest Products Journal, 48(3), 87–90.
  • Emaminasab, M., Tarmian, A., Oladi, R., Pourtahmasi, K. and Avramidis, S. (2017) Fluid permeability in poplar tension and normal wood in relation to ray and vessel properties. Wood Science and Technology, 51(2), 261–272. doi:10.1007/s00226-016-0860-y
  • Fernández, M. (2011) Efecto del Tratamiento de Inmersión en Agua Caliente en la Permeabilidad de la Madera de Eucalyptus Nitens (Deane &. Maiden) Maiden. Memoria de Título. Depto. de Ingeniería en Maderas y sus Biomateriales (Santiago: Facultad de Ciencias Forestales y de la Conservación de la Naturaleza. Universidad de Chile). [In Spanish].
  • Gaitan-Alvarez, J., Berrocal, A., Lykidis, C., Moya, R. and Mantanis, G. (2021) Furfurylation of tropical wood species with and without silver nanoparticles: Part II: Evaluation of wood properties. Wood Material Science & Engineering. doi:10.1080/17480272.2021.1992795
  • Hansmann, C., Gindl, W., Wimer, R. and Teischinger, A. (2002) Permeability of wood – A review. Wood Research, 47(4), 1–16.
  • Kauman, H., Ananías, R. A., Gutiérrez, M. and Valenzuela, H. (1994) Non-Darcian permeability in Chilean Tepa. Holzforschung, 48, 77–81. doi:10.1515/hfsg.1994.48.s1.77
  • Kerekes, R. J. and Mcdonald, J. D. (2020) Equilibrium moisture content in wet pressing of paper. Tappi Journal, 19(7), 333–340. doi:10.32964/TJ19.7.333
  • Kumar, R. and Pizzi, A. (2019) Adhesives for Wood and Lignocellulosic Materials (Beverly: Scrivener Publishing). doi:10.1002/9781119605584
  • Leggate, William, McGavin, Robert L, Miao, Chuang, Outhwaite, Andrew, Chandra, Kerri, Dorries, Jack, Kumar, Chandan and Knackstedt, Mark (2020) The influence of mechanical surface preparation methods on southern pine and spotted gum wood properties: Wettability and permeability. BioResources, 15(4), 8554–8576. http://doi.org/10.15376/biores
  • Leggate, W., McGavin, R. L., Outhwaite, A., Dorries, J., Robinson, R., Kumar, C., Faircloth, A. and Knackstedt, M. (2021) The influence of mechanical surface preparation method, adhesive type, and curing temperature on the bonding of Darwin Stringybark. Bioresources, 16(1), 302–323. doi:10.15376/biores.16.1.302-323
  • Leggate, W., McGavin, R. L., Outhwaite, A., Dorries, J., Robinson, R., Kumar, C., Faircloth, A. and Knackstedt, M. (2021) The influence of mechanical surface preparation method, adhesive type, and curing temperature on the bonding of Darwin stringybark. BioResources, 16(1), 302–323. http://doi.org/10.15376/biores
  • Lihra, T., Cloutier, A. and Zhang, S.-Y. (2000) Longitudinal and transverse permeability of balsam fir wetwood and normal heartwood. Wood and Fiber Science, 72(2), 164–178.
  • Liu, M., Tu, X., Liu, X., Wu, Z., Lv, J. and Varodi, A. M. (2020) A comparative study on the effects of linseed oil and shellac treatment on the hygroscopicity, dimensional stability, and color changes of Chinese ash wood. BioResources, 15(4), 8085–8092. doi:10.15376/biores.15.4.8085-8092
  • Monteiro, T. C., Lima, J. T., da Silva, J. R. M., Rezende, R. N. and Klitzke, R. J. (2020) Water flow in different directions in Corymbia citriodora wood. Maderas. Ciencia y Tecnología, 22(3), 385–394. doi:10.4067/S0718-221X2020005000312
  • Pace, J. H. C., Latorraca, J., Carvalho, A., Santos, G., Almeida, S. and Gomes, F. (2019) Influence of vaporization and impregnation of silver nanoparticles on the drying rate of Eucalyptus pellita f. Muell. Floresta, 49(3), 579–586. doi:10.5380/rf.v49i3.60588
  • Pérez-Peña, N., Chávez, C., Salinas, C. and Ananías, R. A. (2018) Simulation of drying stresses in Eucalyptus nitens wood. BioResources, 13(1), 1413–1424. doi:10.15376/biores.13.1.1413-1424
  • Pérez-Peña, N., Elustondo, D., Valenzuela, L. and Ananías, R. (2020) Variation of perpendicular compressive strength properties related to anatomical structure and density in Eucalyptus nitens green specimens. BioResources, 15(1), 987–1000. doi:10.15376/biores.15.1.987-1000
  • Poonia, P., Hom, S., Sihag, K. and Tripathi, S. (2016) Effect of microwave treatment on longitudinal air permeability and preservative uptake characteristics of chir pine wood. Maderas: Ciencia y Tecnología, 18(1), 125–132. doi:10.4067/S0718-221X2016005000013
  • Rebolledo, P., Cloutier, A. and Yemele, M.-C. (2020) Gas permeability of fiberboard mats as a function of density and fiber size. Wood Material Science & Engineering, 15(3), 147–154. doi:10.1080/17480272.2018.1513070
  • Redman, A. L., Bailleres, H., Turner, I. and Perré, P. (2012) Mass transfer properties (permeability and mass diffusivity) of four Australian hardwood species. BioResources, 7(3), 3410–3424.
  • Rice, R. W. and D’Onofrio, M. (1996) Longitudinal gas permeability measurements from eastern white pine, red spruce, and balsam fir. Wood and Fiber Science, 28(3), 301–308.
  • Rivera, J. G., Espinoza, R., Arteaga, D., Cruz de León, J. and Olmos, L. (2021) Microstructural analysis of Eucalyptus nitens wood through computed microtomography. Wood Material Science & Engineering, 6(5), 344–357. doi:10.1080/17480272.2020.1774926
  • Salvo, L., Leandro, L., Contreras, H., Cloutier, A., Elustondo, D. and Ananías, R. A. (2017) Radial variation of density and anatomical features in Eucalyptus nitens trees. Wood and Fiber Science, 49(3), 301–311.
  • Siau, J. F. (1995) Wood: Influence of Moisture on Physical Properties (Dept. of Wood Science and Forest Products, Virginia Polytechnic Institute and State University). 227 p.
  • Silva, M., Machado, G., Deiner, J. and Calil, C. (2010) Permeability measurements of Brazilian Eucalyptus. Materials Research, 13, 281–286. doi:10.1590/S1516-14392010000300002
  • Soto, D., Gysling, J., Khaler, C., Poblete, P., Álvarez, V., Pardo, E., Bañados, J. and Baeza, D. (2021) Anuario Forestal 2021 [Chilean Statistical Yearbook of Forestry 2020] (Santiago: Instituto Forestal [Forestry Institute]).
  • Taghiyari, H. R., Abbasi, H., Militz, H. and Papadopoulos, A. (2021) Fluid flow of polar and less polar liquids through modified Poplar wood. Forests, 12(4), 482. doi:10.3390/f12040482
  • Taghiyari, H. R. and Sarvari, S. Y. (2010) Ultimate length for reporting gas permeability of Carpinus betulus wood. Special Topics & Reviews in Porous Media, 1(4), 345–351. doi:10.1615/SpecialTopicsRevPorousMedia.v1.i4.60
  • Tan, Y., Hu, J., Chang, S., Wei, Y., Liu, G., Wang, Q. and Liu, Y. (2020) Relationship between pore structure and gas permeability in poplar (Populus deltoides CL.’55/65’) tension wood. Annals of Forest Science. doi:10.1007/s13595-020-00994-6
  • Tanaka, T., Avramidis, S. and Shida, S. (2010) A preliminary study on ultrasonic treatment effect on transverse wood permeability. Maderas. Ciencia y Tecnología, 12(1), 3–9. doi:10.4067/S0718-221X2010000100001
  • Tanaka, T., Kawai, Y., Sadanari, M., Shida, S. and Tsuchimoto, T. (2015) Air permeability of sugi (Cryptomeria japonica) wood in the three directions. Maderas. Ciencia y Tecnología, 17(1), 17–28. doi:10.4067/S0718-221X2015005000002
  • Tarmian, A. and Perré, P. (2009) Air permeability in longitudinal and radial directions of compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Holzforschung, 63(3), 352–356. doi:10.1515/HF.2009.048
  • Terziev, N., Daniel, G., Torgovnikov, G. and Vinden, P. (2020) Effect of microwave treatment on the wood structure on Norway spruce and Radiata pine. BioResources, 15(3), 5616–5626. doi:10.15376/biores.15.3.5616-5626
  • Zhang, J., Yang, L. and Liu, H. (2021) Green and efficient processing of wood with supercritical CO2: A review. Applied Sciences, 21, 3929. doi:10.3390/app11093929

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.