189
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Fire resistance of pine wood treated with phenol-formaldehyde resin and phosphate-based flame retardant

, , ORCID Icon &
Pages 1933-1939 | Received 22 Feb 2023, Accepted 18 Apr 2023, Published online: 03 May 2023

References

  • Babrauskas, V. (2016) The cone calorimeter. In M. J. Hurley, D. Gottuk, J. R. Hall, K. Harada, E. Kuligowski, M. Puchovsky, J. Torero, J. M. Watts, and C. Wieczorek (eds.), SFPE Handbook of Fire Protection Engineering (New York: Springer), pp. 952–980.
  • Bartlett, A. I., Hadden, R. M. and Bisby, L. A. (2019) A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technology, 55(1), 1–49.
  • Bicke, S. (2019) Dimensionsstabile und Pilzresistente Furnierwerkstoffe Durch Zellwandmodifizierung mit Niedermolekularem Phenol-Formaldehyd. Doctoral Thesis (Göttingen, Germany: Georg-August-University Göttingen).
  • CEN 2015: EN ISO 13927 (2015) Plastics. Simple Heat Release Test Using a Conical Radiant Heater and a Thermopile Detector (Brussels, Belgium: European Committee for Standardization).
  • CEN 2020: EN 84 (2020) Wood Preservatives – Accelerated Ageing of Treated Wood Prior to Biological Testing - Leaching Procedure (Brussels, Belgium: European Committee for Standardization).
  • Chung, Y.-J. (2010) Comparison of combustion properties of native wood species used for fire pots in Korea. Journal of Industrial and Engineering Chemistry, 16(1), 15–19.
  • Gao, N., Li, A., Quan, C., Du, L. and Duan, Y. (2013) TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. Journal of Analytical and Applied Pyrolysis, 100, 26–32.
  • Iqbal, A. (2021) Developments in tall wood and hybrid buildings and environmental impacts. Sustainability, 13(21), 11881.
  • Jiang, T., Feng, X., Wang, Q., Xiao, Z., Wang, F. and Xie, Y. (2014) Fire performance of oak wood modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant. Construction and Building Materials, 72, 1–6.
  • Jiang, J., Li, J. and Gao, Q. (2015) Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Construction and Building Materials, 75, 74–81.
  • Jones, D., Sandberg, D., Goli, G. and Todaro, L.2020) Wood Modification in Europe: A State-of-the-art About Processes, Products and Applications (1st ed.), Vol. 124 (Italy: Firenze University Press.)
  • Kurkowiak, K., Wu, M., Emmerich, L. and Militz, H. (2023) Fire-retardant properties of wood modified with sorbitol, citric acid and a phosphorous-based system. Holzforschung, 77(1), 38–44.
  • Kong, L., Guan, H. and Wang, X. (2018). In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustainable Chemistry & Engineering, 6(3), 3349–3357.
  • Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M. and Dubois, P. (2009) New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports, 63(3), 100–125.
  • Lin, C.-F., Karlsson, O., Kim, I., Myronycheva, O., Mensah, R. A., Försth, M., Das, O., Mantanis, G. I., Jones, D. and Sandberg, D. (2022) Fire retardancy and leaching resistance of furfurylated pine wood (Pinus sylvestris L.) treated with guanyl-urea phosphate. Polymers, 14(9), 1829.
  • Lin, C.-F., Karlsson, O., Mantanis, G. I. and Sandberg, D. (2020) Fire performance and leach resistance of pine wood impregnated with guanyl-urea phosphate/boric acid and a melamine-formaldehyde resin. European Journal of Wood and Wood Products, 78(1), 107–111.
  • Lin, C., Karlsson, O., Martinka, J., Rantuch, P., Garskaite, E., Mantanis, G. I., Jones, D. and Sandberg, D. (2021) Approaching highly leaching-resistant fire-retardant wood by in situ polymerization with melamine formaldehyde resin. ACS Omega, 6(19), 12733–12745.
  • Lowden, L. and Hull, T. (2013) Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews, 2(1), 4.
  • Östman, B., Brandon, D. and Frantzich, H. (2017) Fire safety engineering in timber buildings. Fire Safety Journal, 91, 11–20.
  • Östman, B., Voss, A., Hughes, A., Jostein Hovde, P. and Grexa, O. (2001) Durability of fire retardant treated wood products at humid and exterior conditions review of literature. Fire and Materials, 25(3), 95–104.
  • Pries, M. and Mai, C. (2013) Fire resistance of wood treated with a cationic silica sol. European Journal of Wood and Wood Products, 71(2), 237–244.
  • Qiao, W., Li, S., Guo, G., Han, S., Ren, S. and Ma, Y. (2015) Synthesis and characterization of phenol-formaldehyde resin using enzymatic hydrolysis lignin. Journal of Industrial and Engineering Chemistry, 21, 1417–1422.
  • Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P. F. and Scherman, O. (2017) The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333–359.
  • Schartel, B. (2010) Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials, 3(10), 4710–4745.
  • Steen-Hansen, A. and Kristoffersen, B. (2007) Prediction of fire classification for wood based products. A multivariate statistical approach based on the cone calorimeter. Fire and Materials, 31(3), 207–223.
  • Wang, D., Ling, Q., Nie, Y., Zhang, Y., Zhang, W., Wang, H. and Sun, F. (2021) In-situ cross-linking of waterborne epoxy resin inside wood for enhancing its dimensional stability, thermal stability, and decay resistance. ACS Applied Polymer Materials, 3(12), 6265–6273.
  • Wang, K., Meng, D., Wang, S., Sun, J., Li, H., Gu, X. and Zhang, S. (2022) Impregnation of phytic acid into the delignified wood to realize excellent flame retardant. Industrial Crops and Products, 176, 114364.
  • Wang, F., Wang, Q. and Wang, X. (2010) Progress in research on fire retardant–treated wood and wood-based composites: A Chinese perspective. Forest Products Journal, 60(7), 668–678.
  • Xie, Y., Xu, J., Militz, H., Wang, F., Wang, Q., Mai, C. and Xiao, Z. (2016) Thermo-oxidative decomposition and combustion behavior of Scots pine (Pinus sylvestris L.) sapwood modified with phenol- and melamine-formaldehyde resins. Wood Science and Technology, 50(6), 1125–1143.
  • Xu, Q., Chen, L., Harries, K. A., Zhang, F., Liu, Q. and Feng, J. (2015) Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Construction and Building Materials, 96, 416–427.
  • Yue, K., Chen, Z., Lu, W., Liu, W., Li, M., Shao, Y., Tang, L. and Wan, L. (2017) Evaluating the mechanical and fire-resistance properties of modified fast-growing Chinese fir timber with boric-phenol-formaldehyde resin. Construction and Building Materials, 154, 956–962.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.