462
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Mode I fracture properties of thermally-modified spruce wood (Picea abies) at different moisture contents

ORCID Icon, ORCID Icon &
Pages 2093-2103 | Received 12 Apr 2023, Accepted 19 Jun 2023, Published online: 25 Jun 2023

References

  • Andor, T. and Lagaňa, R. (2018) Selected properties of thermally treated ash wood. Acta Facultatis Xylologiae, 60 (1), 51–60. doi:10.17423/afx.2018.60.1.06
  • Ayanleye, S., Udele, K., Nasir, V., Zhang, X. and Militz, H. (2022) Durability and protection of mass timber structures: a review. Journal of Building Engineering, 46. doi:10.1016/j.jobe.2021.103731
  • Bekhta, P. and Niemz, P. (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung, 57 (5), 539–546. doi:10.1515/HF.2003.080
  • Crespo, J., Majano-Majano, A., Xavier, J. and Guaita, M. (2018) Determination of the resistance-curve in Eucalyptus globulus through double cantilever beam tests. Materials and Structures, 51 (3), doi:10.1617/s11527-018-1209-9
  • Dourado, N.M.M., De Moura, M.F.S.F., Morais, J.J.L. and Silva, M.A.L. (2010) Estimate of resistance-curve in wood through the double cantilever beam test. Holzforschung, 64 (1), 119–126. doi:10.1515/HF.2010.010
  • El Kabir, S., Dubois, F., Moutou Pitti, R., Recho, N. and Lapusta, Y. (2018) A new analytical generalization of the J and G-theta integrals for planar cracks in a three-dimensional medium. Theoretical and Applied Fracture Mechanics, 94, 101–109. doi:10.1016/j.tafmec.2018.01.004
  • El Moustaphaoui, A., Chouaf, A., Kimakh, K. and Chergui, M. (2021) Determination of the onset and propagation criteria of delamination of Ceiba plywood by an experimental and numerical analysis. Wood Material Science & Engineering, 16 (5), 325–335. doi:10.1080/17480272.2020.1737963
  • Gómez-Royuela, J.L., Majano-Majano, A., Lara-Bocanegra, A.J., Xavier, J. and de Moura, M.F.S.F. (2022) Evaluation of R-curves and cohesive law in mode I of European beech. Theoretical and Applied Fracture Mechanics, 118. doi:10.1016/j.tafmec.2021.103220
  • Hanincová, L., Procházka, J., Novák, V. and Kopecký, Z. (2022) Influence of moisture content on cutting parameters and fracture characteristics of spruce and Oak wood. Drvna Industrija, 73 (3), 341–349. doi:10.5552/drvind.2022.0026
  • Hlásková, L., Procházka, J., Novák, V., Čermák, P. and Kopecký, Z. (2021) Interaction between thermal modification temperature of spruce wood and the cutting and fracture parameters. Materials, 14 (20), doi:10.3390/ma14206218
  • Hughes, M., Hill, C. and Pfriem, A. (2015) The toughness of hygrothermally modified wood: COST Action FP0904 2010-2014: thermo-hydro-mechanical wood behavior and processing. Holzforschung, 69 (7), 851–862. doi:10.1515/hf-2014-0184
  • Kitek Kuzman, M., Klarić, S., Pirc Barčić, A., Vlosky, R.P., Janakieska, M.M. and Grošelj, P. (2018) Architect perceptions of engineered wood products: an exploratory study of selected countries in Central and Southeast Europe. Construction and Building Materials, 179, 360–370. doi:10.1016/j.conbuildmat.2018.05.164
  • Kumar, P. (2009) Elements of fracture mechanics. New Delhi [etc.]: Tata McGraw-Hill.
  • Kurul, F. and Görgün, H.V. (2022) Effect of thermal modification on some physical and mechanical properties of yellow poplar (Liriodendron tulipifera). Drewno, 65 (209), doi:10.12841/wood.1644-3985.380.01
  • Majano-Majano, A., Hughes, M. and Fernandez-Cabo, J.L. (2012) The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Science and Technology, 46 (1-3), 5–21. doi:10.1007/s00226-010-0389-4
  • Merhar, M. and Bucar, B. (2012) Cutting force variability as a consequence of exchangeable cleavage fracture and compressive breakdown of wood tissue. Wood Science and Technology, 46 (5), 965–977. doi:10.1007/s00226-011-0457-4
  • Merhar, M., Bucar, D.G. and Bucar, B. (2013) Mode I critical stress intensity factor of beech wood (fagus sylvatica) in a TL configuration: a comparison of different methods. Drvna Industrija, 64 (3), 221–229. doi:10.5552/drind.2013.1253
  • Molinski, W., Roszyk, E., Jablonski, A., Puszynski, J. and Cegiela, J. (2018) Mechanical parameters of thermally modified ash wood determined on compression in tangential direction. Maderas. Ciencia y Tecnología, 20 (2), doi:10.4067/S0718-221X2018005021001
  • Moutou Pitti, R., Badulescu, C. and Grédiac, M. (2014) Characterization of a cracked specimen with full-field measurements: direct determination of the crack tip and energy release rate calculation. International Journal of Fracture, 187 (1), 109–121. doi:10.1007/s10704-013-9921-5
  • Moutou Pitti, R., Dubois, F., Petit, C., Sauvat, N. and Pop, O. (2008) A new M-integral parameter for mixed-mode crack growth in orthotropic viscoelastic material. Engineering Fracture Mechanics, 75 (15), 4450–4465. doi:10.1016/j.engfracmech.2008.04.021
  • Murata, K., Watanabe, Y. and Nakano, T. (2013) Effect of thermal treatment on fracture properties and adsorption properties of spruce wood. Materials, 6 (9), 4186–4197. doi:10.3390/ma6094186
  • Nhacila, F., Sitoe, E., Uetimane, E., Manhica, A., Egas, A. and Möttönen, V. (2020) Effects of thermal modification on physical and mechanical properties of Mozambican Brachystegia spiciformis and Julbernardia globiflora wood. European Journal of Wood and Wood Products, 78 (5), 871–878. doi:10.1007/s00107-020-01576-z
  • Odounga, B., Moutou Pitti, R., Toussaint, E. and Grédiac, M. (2018) Mode I fracture of tropical woods using grid method. Theoretical and Applied Fracture Mechanics, 95, 1–17. doi:10.1016/j.tafmec.2018.02.006
  • Oliveira, J., Xavier, J., Pereira, F., Morais, J. and De Moura, M. (2021) Direct evaluation of mixed mode I+II cohesive laws of wood by coupling MMB test with DIC. Materials, 14 (2), 374–312. doi:10.3390/ma14020374
  • Pečnik, J.G., Pondelak, A., Burnard, M.D. and Sebera, V. (2022) Mode I fracture of beech-adhesive bondline at three different temperatures. Wood Material Science & Engineering. doi:10.1080/17480272.2022.2135135
  • Pitti, R.M., Hamdi, S.E., Dubois, F., Fournely, E. and Kuzman, M.K. (2016). Thermo-hydro fracture and viscoelastic behavior of timber based materials: Numerical analysis. Paper Presented at the WCTE 2016 - World Conference on Timber Engineering.
  • Reiterer, A. and Tschegg, S. (2002) The influence of moisture content on the mode I fracture behaviour of sprucewood. Journal of Materials Science, 37 (20), 4487–4491. doi:10.1023/A:1020610231862
  • Rep, G., Pohleven, F. and Kosmerl, S. (2012). Development of the Industrial Kiln for Thermal Wood Modification by a Procedure with an Initial Vacuum and Commercialisation of Modified Silvapro Wood. Paper Presented at the the 6th European Conference on Wood Modification, Ljubljana, Slovenia.
  • Rice, J.R. (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35 (2), 379–386. doi:10.1115/1.3601206
  • Ross, R.J. (2010) Wood handbook: wood as an engineering material. Madison, WI: The Forest Products Laboratory: Forest Products Society.
  • Roszyk, E., Stachowska, E., Majka, J., Mania, P. and Broda, M. (2020) Moisture-dependent strength properties of thermally-modified Fraxinus excelsior wood in compression. Materials, 13 (7), 1647. doi:10.3390/ma13071647
  • Sebera, V., Redón-Santafé, M., Brabec, M., Děcký, D., Čermák, P., Tippner, J. and Milch, J. (2019) Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test. Holzforschung, 73 (7), 663–672. doi:10.1515/hf-2018-0188
  • Sih, G.C., Paris, P.C. and Irwin, G.R. (1965) On cracks in rectilinearly anisotropic bodies. International Journal of Fracture Mechanics, 1 (3), 189–203. doi:10.1007/BF00186854
  • Smith, I., Landis, E. and Gong, M. (2003) Fatigue and fracture of wood. Chichester, New York: Wiley.
  • Stanzl-Tschegg, S.E. and Navi, P. (2009) Fracture behaviour of wood and its composites. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture. Holzforschung, 63 (2), 139–149. doi:10.1515/HF.2009.012
  • Stanzl-Tschegg, S.E., Tan, D.M. and Tschegg, E.K. (1995) New splitting method for wood fracture characterization. Environmental Science & Technology, 29 (1), 31–50. doi:10.1007/BF00196930
  • Subramanyam Reddy, M., Ramesh, K. and Thiyagarajan, A. (2018) Evaluation of mode-I SIF, T-stress and J-integral using displacement data from digital image correlation – Revisited. Theoretical and Applied Fracture Mechanics, 96, 146–159. doi:10.1016/j.tafmec.2018.04.006
  • Thybring, E.E. and Fredriksson, M. (2021) Wood modification as a tool to understand moisture in wood. Forests, 12 (3), doi:10.3390/f12030372
  • Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P. and Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff, 56 (3), 149–153. doi:10.1007/s001070050287
  • Tukiainen, P. and Hughes, M. (2016) The effect of temperature and moisture content on the fracture behaviour of spruce and birch. Holzforschung, 70 (4), 369–376. doi:10.1515/hf-2015-0017
  • van Blokland, J., Olsson, A., Oscarsson, J., Daniel, G. and Adamopoulos, S. (2020) Crack formation, strain distribution and fracture surfaces around knots in thermally modified timber loaded in static bending. Wood Science and Technology, 54 (4), 1001–1028. doi:10.1007/s00226-020-01190-5
  • Vasic, S. and Stanzl-Tschegg, S. (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung, 61 (4), 367–374. doi:10.1515/HF.2007.056
  • Wang, X., Chen, X., Xie, X., Wu, Y., Zhao, L., Li, Y. and Wang, S. (2018) Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinus massoniana Lamb.). Holzforschung, 72 (12), 1063–1070. doi:10.1515/hf-2017-0205
  • Xavier, J., Monteiro, P., Morais, J.J.L., Dourado, N. and De Moura, M.F.S.F. (2014) Moisture content effect on the fracture characterisation of Pinus pinaster under mode i. Journal of Materials Science, 49 (21), 7371–7381. doi:10.1007/s10853-014-8375-0
  • Xavier, J., Oliveira, M., Monteiro, P., Morais, J.J.L. and de Moura, M.F.S.F. (2014) Direct evaluation of cohesive law in mode I of pinus pinaster by digital image correlation. Experimental Mechanics, 54 (5), 829–840. doi:10.1007/s11340-013-9838-y
  • Yu, Y., Xin, R., Zeng, W. and Liu, W. (2021) Fracture resistance curves of wood in the longitudinal direction using digital image correlation technique. Theoretical and Applied Fracture Mechanics, 114. doi:10.1016/j.tafmec.2021.102997
  • Zanganeh, M., Lopez-Crespo, P., Tai, Y.H. and Yates, J.R. (2013) Locating the crack tip using displacement field data: a comparative study. Strain, 49 (2), 102–115. doi:10.1111/str.12017