127
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Wood fiber production from downed timber for manufacturing wood polymer composite: fiber property characterization

, , , , , , , & show all
Pages 541-555 | Received 24 Jun 2023, Accepted 01 Oct 2023, Published online: 29 Oct 2023

References

  • Aghalari, A., et al., 2021. A bilevel model formulation for solving a post-hurricane damaged timber management problem. Computers & Industrial Engineering, 162, doi:10.1016/j.cie.2021.107726.
  • Ayrilmis, N., Kaymakci, A., and Gulec, T., 2015. Potential use of decayed wood in production of wood plastic composite. Industrial Crops and Products, 74, 279–284. doi:10.1016/j.indcrop.2015.04.024.
  • Blanchette, R.A., et al., 1997. Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, ceriporiopsis subvermispora. Journal of Biotechnology, 53, 203–213. doi:10.1016/S0168-1656(97)01674-X.
  • Brand, M.A., et al., 2011. Storage as a tool to improve wood fuel quality. Biomass and Bioenergy, 35, 2581–2588. doi:10.1016/j.biombioe.2011.02.005.
  • Broda, M., and Popescu, C.M., 2019. Natural decay of archaeological oak wood versus artificial degradation processes — An FT-IR spectroscopy and X-ray diffraction study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 209, 280–287. doi:10.1016/j.saa.2018.10.057.
  • Choong, E., 1969. Effect Of extractives on shrinkage and other hygroscopic properties of ten southern pine woods. Wood and Fiber Science, 1, 124–133.
  • Collier, W.E., Schultz, T.P., and Kalasinsky, V.F., 1992. Infrared study of lignin: reexamination of aryl-alkyl ether C—O stretching peak assignments. Holzforschung, 46, 523–528. doi:10.1515/hfsg.1992.46.6.523.
  • Curling, S.F., Clausen, C.A., and Winandy, J.E., 2001. The effect of hemicellulose degradation on the mechanical properties of wood during brown rot decay. Nara, Japan: The International Research Group on Wood Preservation.
  • Curling, S.F., Clausen, C.A., and Winandy, J.E., 2002. Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay. Forest Prod J, 52, 34–39.
  • Eastwood, D.C., 2014. ACS symposium series. Acs Sym Ser, 1158, 93–112. doi:10.1021/bk-2014-1158.ch005.
  • Elsheikh, A.H., et al., 2022. Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment. Cleaner Engineering and Technology, 8, doi:10.1016/j.clet.2022.100450.
  • Funda, T., et al., 2020. Predicting the chemical composition of juvenile and mature woods in Scots pine (pinus sylvestris L.) using FTIR spectroscopy. Wood Science and Technology, 54, 289–311. doi:10.1007/s00226-020-01159-4.
  • Glass, S.V., et al., 2018. Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Science and Technology, 52, 909–927. doi:10.1007/s00226-018-1007-0.
  • Grønli, M.G., Varhegyi, G., and Di Blasi, C., 2002. Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41, 4201–4208. doi:10.1021/ie0201157.
  • Groom, L., Mott, L., and Shaler, S., 2002a. Mechanical properties of individual southern pine fibers. Part I. Determination and Variability of Stress-Strain Curves with Respect to Tree Height and Juvenility. Wood and Fiber Science, 34, 14–27.
  • Groom, L., Shaler, S., and Mott, L., 2002b. Mechanical properties of individual southern pine fibers. part III: global relationships between fiber properties and fiber location within an individual tree. Wood and Fiber Science, 34, 238–250.
  • Hastrup, A.C.S., et al., 2012. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biology, 116, 1052–1063. doi:10.1016/j.funbio.2012.07.009.
  • Hehar, G., et al., 2014. Ignition and volatilization behavior of dust from loblolly pine wood. Fuel Processing Technology, 127, 117–123. doi:10.1016/j.fuproc.2014.04.036.
  • Junior, G.B., and Moreschi, J.C., 2003. Physical-mechanical properties and chemical composition of pinus taeda mature wood following a forest fire. Bioresource Technology, 87, 231–238. doi:10.1016/S0960-8524(02)00242-0.
  • Kawase, K., 1962. Chemical components of wood decayed under natural condition and their properties. Journal of the Faculty of Agriculture, 52, 186–245.
  • Kirker, G.T., et al., 2013. The role of extractives in naturally durable wood species. International Biodeterioration & Biodegradation, 82, 53–58. doi:10.1016/j.ibiod.2013.03.007.
  • Knoll, C.S., Wong, B.M., and Roy, D.N., 1993. The chemistry of decayed aspen wood and perspectives on Its utilization. Wood Science and Technology, 27, 439–448. doi:10.1007/BF00193867.
  • Kupfer, J.A., et al., 2008. Patterns of forest damage in a southern Mississippi landscape caused by hurricane katrina. Ecosystems, 11, 45–60. doi:10.1007/s10021-007-9106-z.
  • Lindenmayer, D.B., Burton, P.J., and Franklin, J.F., 2008. Salvage logging and its ecological consequences. Washington, DC: Island Press.
  • Long, A., et al., 2005. Assessment and management of hurricane damaged timberland: SS-FOR 22/FR154, 1/2005.EDIS, 2005, doi:10.32473/edis-fr154-2005.
  • McMillin, C.W., 1968a. Ash content of loblolly pine wood as related to specific gravity, growth rate, and distance from pith. Wood Science, 2, 26–30.
  • Mcmillin, C.W., 1968. Morphological characteristics of loblolly pine wood as related to specific gravity growth rate and distance from pith. Wood Science and Technology, 2, 166. doi: 10.1007/BF00350906
  • Michell, A.J., 1966. Infrared spectra of lignin model compounds and of lignins from eucalyptus regnans. Australian Journal of Chemistry, 19, 2285. doi:10.1071/CH9662285.
  • Mitchell, D., Smidt, M., and Mcdonald, T., 2021. Issues and opportunities for salvaging storm damaged wood. NE, 2692–2698. doi:10.13031/aim.202101231.
  • Mizzoni, F., and Cesaro, S.N., 2007. Study of the organic residue from a 2600-year old etruscan plumpekanne. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68, 377–381. doi:10.1016/j.saa.2006.12.005.
  • Mott, L., Groom, L., and Shaler, S., 2002. Mechanical properties of individual southern pine fibers. Part II. Comparison of Earlywood and Latewood Fibers with Respect to Tree Height and Juvenility. Wood and Fiber Science, 34, 221–237.
  • Musah, M., et al., 2022. Field assessment of downed timber strength deterioration rate and wood quality using acoustic technologies. Forests, 13, doi:10.3390/f13050752.
  • Oyedeji, O., et al., 2016. The effect of storage time and moisture content on grindability of loblolly pine (pinus taeda L.). European Journal of Wood and Wood Products, 74, 857–866. doi:10.1007/s00107-016-1070-x.
  • Pandey, K.K., 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71, 1969–1975. doi:10.1002/(Sici)1097-4628(19990321)71:12<1969::Aid-App6>3.3.Co;2-4.
  • Pandey, K.K., and Pitman, A.J., 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation, 52, 151–160. doi:10.1016/S0964-8305(03)00052-0.
  • Pandey, K.K., and Theagarajan, K.S., 1997. Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacoustic (PAS) Fourier transform infrared spectroscopic techniques. Holz als Roh- und Werkstoff, 55, 383–390. doi:10.1007/s001070050251.
  • Peng, Y.C., Han, Y.S., and Gardner, D.J., 2012. Spray-Drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood and Fiber Science, 44, 448–461.
  • Prestemon, J.P., and Holmes, T.P., 2004. Market dynamics and optimal timber salvage after a natural catastrophe. Forest Sci, 50, 495–511.
  • Prestemon, J.P., and Holmes, T.P., 2010. Economic impacts of hurricanes on forest owners vol 2. General Technical Report PNW-GTR-802.
  • Radtke, P.J., et al., 2004. A proposed model for deadwood C production and decay in loblolly pine plantations. Environmental Management, 33, S56–S64. doi:10.1007/s00267-003-9117-2.
  • Rodrigues, J., Faix, O., and Pereira, H., 1998. Determination of lignin content of eucalyptus globulus wood using FTIR spectroscopy. Holzforschung, 52, 46–50. doi:10.1515/hfsg.1998.52.1.46.
  • Rutledge, B.T., et al., 2021. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: post-hurricane assessment in a longleaf pine landscape. Forest Ecology and Management, 481, doi:10.1016/j.foreco.2020.118724.
  • Schultz, T.P., and Glasser, W.G., 1986. Proposed mechanism for the nitrobenzene oxidation of lignin. Holzforschung, 40, 93–97. doi: 10.1515/hfsg.1986.40.2.93
  • Stanturf, J.A., Goodrick, S.L., and Outcalt, K.W., 2007. Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones. Forest Ecology and Management, 250, 119–135. doi:10.1016/j.foreco.2007.03.015.
  • Traore, M., Kaal, J., and Cortizas, A.M., 2018. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Science and Technology, 52, 487–504. doi:10.1007/s00226-017-0967-9.
  • Vahur, S., Kriiska, A., and Leito, I., 2011. Investigation of the adhesive residue on the flint insert and the adhesive lump found from the pulli early mesolithic settlement site (Estonia) by micro-Atr-Ft-Ir spectroscopy. Estonian Journal of Archaeology, 15, 3–17. doi:10.3176/arch.2011.1.01.
  • Via, B.K., et al., 2006. Variation of kink and curl of longleaf pine (pinus palustris) fibers. Characterization of the Cellulosic Cell Wall, 180–191. doi:10.1002/9780470999714.ch14.
  • Via, B.K., et al., 2007. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle. IAWA Journal, 28, 189–210. doi:10.1163/22941932-90001633.
  • Via, B.K., et al., 2009. Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position. Composites Part A: Applied Science and Manufacturing, 40, 60–66. doi:10.1016/j.compositesa.2008.10.007.
  • Villalba, L.L., Scott, G.M., and Schroeder, L.R., 2006. Modification of loblolly pine chips with Ceriporiopsis subvermispora part 1: Effect of fungal treatment. Journal of Wood Chemistry and Technology, 26, 339–348. doi:10.1080/02773810601105177.
  • Vogt, J.T., et al., 2020. Interactions between weather-related disturbance and forest insects and diseases in the southern United States. Gen. Tech. Rep. SRS–255, Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. doi:10.2737/SRS-GTR-255.
  • Wong, A.H.H., and Wilkes, J., 1988. Progressive changes in cell wall components of pinus radiata during decay. International Biodeterioration, 24, 481–487. doi:10.1016/0265-3036(88)90036-X.
  • Yao, Q., et al., 2022. Nature versus humans in coastal environmental change: assessing the impacts of hurricanes zeta and Ida in the context of beach nourishment projects in the Mississippi river delta. Remote Sensing, 14, doi:10.3390/rs14112598.
  • Yeh, T., 2006. Chemical and structural characterizations of juvenile wood, mature wood, and compression wood of loblolly pine (pinus taeda). Raleigh, NC: North Carolina State University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.