97
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Enhanced paint adhesion of puffed wood-based metal composites via surface treatment with silane coupling agent

ORCID Icon, , ORCID Icon, , &
Pages 573-579 | Received 13 Jul 2023, Accepted 07 Oct 2023, Published online: 26 Oct 2023

References

  • Abenojar, J., et al., 2014. Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation. Wood Science and Technology, 48, 207–224. doi:10.1007/s00226-013-0599-7.
  • Altgen, D., et al., 2020. Time-dependent wettability changes on plasma-treated surfaces of unmodified and thermally modified European beech wood. European Journal of Wood and Wood Products, 78, 417–420. doi:10.1007/s00107-020-01505-0.
  • Bao, X., et al., 2021. Investigating the surface wettability and surface free energy of sodium silicate-impregnated poplar wood. Wood Material Science & Engineering, 168, 1–10. doi:10.1080/17480272.2021.1996454.
  • Brehm, M., et al., 2020. Reversible surface wettability by silanization. Advanced Materials Interfaces, 7 (12), 1902134. doi:10.1002/admi.201902134.
  • Chai, Y., et al., 2020. Low-melting-point alloy integration into puffed wood for improving mechanical and thermal properties of wood–metal functional composites. Wood Science and Technology, 54, 637–649. doi:10.1007/s00226-020-01174-5.
  • Chen, L., et al., 2013. A facile method to prepare multifunctional PBO fibers: simultaneously enhanced interfacial properties and UV resistance. Rsc Advances, 3 (46), 24664–24670. doi:10.1039/c3ra44876b.
  • Chen, H., et al., 2018. Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. Journal of Wood Science, 64, 398–405. doi:10.1007/s10086-018-1713-0.
  • Cheumani Yona, A.M., et al., 2021. Study of the adhesion of silicate-based coating formulations on a wood substrate. Coatings, 11 (1), 61. doi:10.3390/coatings11010061.
  • Cristea, M.V., Riedl, B., and Blanchet, P., 2010. Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Progress in Organic Coatings, 69 (4), 432–441. doi:10.1016/j.porgcoat.2010.08.006.
  • Croitoru, C., et al., 2014. Ionic liquids influence on the surface properties of electron beam irradiated wood. Applied Surface Science, 314, 956–966. doi:10.1016/j.apsusc.2014.06.142.
  • Darmawan, W., et al., 2018. Wettability and bonding quality of exterior coatings on jabon and sengon wood surfaces. Journal of Coatings Technology and Research, 15, 95–104. doi:10.1007/s11998-017-9954-1.
  • Gholamiyan, H., et al., 2016. Silane nanofilm formation by sol-gel processes for promoting adhesion of waterborne and solvent-borne coatings to wood surface. Holzforschung, 70 (5), 429–437. doi:10.1515/hf-2015-0072.
  • Grafia, A.L., Martini, R.E., and Barbosa, S.E., 2018. Spray process to styrene grafting onto polyethylene film surface for paintability enhancement. Progress in Organic Coatings, 117, 91–101. doi:10.1016/j.porgcoat.2018.01.003.
  • Gwon, J.G., et al., 2010. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. Journal of Applied Polymer Science, 116 (6), 3212–3219. doi:10.1002/app.31746.
  • Hänsel, A., et al., 2022. Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: a review. Wood Material Science & Engineering, 17 (3), 230–241. doi:10.1080/17480272.2021.1925963.
  • Hansmann, C., Weichslberger, G., and Gindl, W., 2005. A two-step modification treatment of solid wood by bulk modification and surface treatment. Wood Science and Technology, 39 (6), 502–511. doi:10.1007/s00226-005-0002-4.
  • Herrera, R., et al., 2018. Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Progress in Organic Coatings, 119, 145–154. doi:10.1016/j.porgcoat.2018.02.015.
  • Khan, M.N., et al., 2022. Performance of advanced waterborne wood coatings reinforced with cellulose nanocrystals. ACS Applied Bio Materials, 5 (9), 4179–4190. doi:10.1021/acsabm.2c00383.
  • Li, B., et al., 2018. Fabrication and corrosion property of novel 3-aminopropyltriethoxy-modified calcium phosphate/poly (lactic acid) composite coating on AZ60 Mg alloy. Applied Physics A, 124, 1–13. https://doi.org/10.1007/s00339-018-2240-y.
  • Li, M., et al., 2019. A robust and versatile superhydrophobic coating: wear-resistance study upon sandpaper abrasion. Applied Surface Science, 480, 738–748. doi:10.1016/j.apsusc.2019.03.001.
  • Liu, F., et al., 2013. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Applied Surface Science, 280, 686–692. doi:10.1016/j.apsusc.2013.05.043.
  • Liu, Y., et al., 2019. Modifying wood veneer with silane coupling agent for decorating wood fiber/high-density polyethylene composite. Construction and Building Materials, 224, 691–699. doi:10.1016/j.conbuildmat.2019.07.090.
  • Liu, W., et al., 2020. Modification of birch wood surface with silane coupling agents for adhesion improvement of UV-curable ink. Progress in Organic Coatings, 148, 105833. doi:10.1016/j.porgcoat.2020.105833.
  • Owens, D.K., 1970. Some thermodynamic aspects of polymer adhesion. Journal of Applied Polymer Science, 14 (7), 1725–1730. https://doi.org/10.1002/app.1969.070130815.
  • Peng, X., and Zhang, Z., 2019. Improvement of paint adhesion of environmentally friendly paint film on wood surface by plasma treatment. Progress in Organic Coatings, 134, 255–263. doi:10.1016/j.porgcoat.2019.04.024.
  • Peng, X., and Zhang, Z., 2020. Research of polypropylene (PP) decorative board surface painting used for wood product decoration and the paint film adhesion improvement by plasma. Journal of Adhesion Science and Technology, 34 (3), 246–262. doi:10.1080/01694243.2019.1667139.
  • Schaller, C., Rogez, D., and Braig, A., 2012. Organic vs inorganic light stabilizers for waterborne clear coats: a fair comparison. Journal of Coatings Technology and Research, 9, 433–441. doi:10.1007/s11998-011-9380-8.
  • Scrinzi, E., et al., 2011. Evaluation of aesthetic durability of waterborne polyurethane coatings applied on wood for interior applications. Progress in Organic Coatings, 72 (1-2), 81–87. doi:10.1016/j.porgcoat.2011.03.013.
  • Stockwell, C.E., … Warneke, C., 2021. Volatile organic compound emissions from solvent-and water-borne coatings–compositional differences and tracer compound identifications. Atmospheric Chemistry and Physics, 21 (8), 6005–6022. doi:10.5194/acp-21-6005-2021.
  • Tao, X., et al., 2023a. Construction of multifunctional surface to fabricate wood-derived cellulose electrothermal composites with flame retardant and hydrophobic performance for harsh operating conditions. Industrial Crops and Products, 202, 117079. doi:10.1016/j.indcrop.2023.117079.
  • Tao, X., et al., 2023b. Facile strategy for preparing puffed wood-based metal composites with low density and enhanced thermal conduction via high-intensity microwave puffing pretreatment. Industrial Crops and Products, 194, 116388. doi:10.1016/j.indcrop.2023.116388.
  • Wan, J., et al., 2017. Highly anisotropic conductors. Advanced Materials, 29 (41), 1703331. doi:10.1002/adma.201703331.
  • Wang, Q., et al., 2019. Volatile organic compounds and odor emissions from veneered particleboards coated with water-based lacquer detected by gas chromatography-mass spectrometry/olfactometry. European Journal of Wood and Wood Products, 77, 771–781. doi:10.1007/s00107-019-01427-6.
  • Wang, Z.L., et al., 2022a. Highly anisotropic metallized wood obtained by filling basswood channels with low-melting-point Sn-Bi alloy. Industrial Crops and Products, 189, 115864. doi:10.1016/j.indcrop.2022.115864.
  • Wang, C.Y., et al., 2022b. Usage of atmosphere pressure plasma for rapid polyethylene functionalisation exhibiting only minor ageing. European Polymer Journal, 181, 111669. doi:10.1016/j.eurpolymj.2022.111669.
  • Ye, H., et al., 2021. Interfacial bonding properties of the eco-friendly geopolymer-wood composites: influences of embedded wood depth, wood surface roughness, and moisture conditions. Journal of Materials Science, 56, 7420–7433. doi:10.1007/s10853-021-05775-8.
  • Yin, H., et al., 2022. Wettability performance and physicochemical properties of UV exposed superhydrophobized birch wood. Applied Surface Science, 584, 152528. doi:10.1016/j.apsusc.2022.152528.
  • Zhang, Q., et al., 2015. Study on the relationship between surface free energy and bonding strength of poplar veneer treated with coupling agent. China Forest Products Industry, 10 (14–17), 22. doi:10.19531/j.issn.1001-5299.2015.10.004.
  • Zhang, L., et al., 2022a. Mechanical, thermal stability, and flame retardancy performance of transparent wood composite improved with delaminated Ti3C2Tx (MXene) nanosheets. Journal of Materials Science, 57, 3348–3359. doi:10.1007/s10853-021-06776-3.
  • Zhang, M., et al., 2022b. Construction of high-efficiency fixing structure of waterborne paint on silicate-modified poplar surfaces by bridging with silane coupling agents. Progress in Organic Coatings, 167, 106846. doi:10.1016/j.porgcoat.2022.106846.
  • Zhao, X., et al., 2022. Development of metallic wood with enhanced physical, mechanical, and thermal conduction properties based on a self-driven penetration mechanism. Industrial Crops and Products, 183, 114960. doi:10.1016/j.indcrop.2022.114960.
  • Zhou, Y., et al., 2022. Effect of silanization pre-treatment on adhesive force and early protective properties of water-based polyurethane coating on surface of magnesium alloy. Materials Protection, 55 (3), 1–6. doi:10.16577/j.issn.1001-1560.2022.0058.
  • Zhu, X.D., Liu, Y., and Shen, J., 2016. Volatile organic compounds (VOCs) emissions of wood-based panels coated with nanoparticles modified water based varnish. European Journal of Wood and Wood Products, 74, 601–607. doi:10.1007/s00107-016-1012-7.
  • Žigon, J., Moghaddam, M.S., and Wålinder, M.E., 2023. Wettability and surface interactions of natural and thermally modified beech wood with water and water-based coatings: the effect of surface pre-treatment type. European Journal of Wood and Wood Products, 81 (1), 73–88. doi:10.1007/s00107-022-01875-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.