93
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Stress distribution and microstructural response of radiata pine under high-intensity microwave (HIMW) treatment

, ORCID Icon, , , , & show all
Pages 875-886 | Received 19 Sep 2023, Accepted 27 Nov 2023, Published online: 30 Dec 2023

References

  • Almeida, G., and Hernández, R.E., 2006. Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Science and Technology, 40 (7), 599–613. doi:10.1007/s00226-006-0083-8.
  • Antti, A.L., and Perré, P., 1999. A microwave applicator for on line wood drying: temperature and moisture distribution in wood. Wood Science and Technology, 33 (2), 123–138. doi:10.1007/s002260050104.
  • Astley, R.J., Stol, K.A., and Harrington, J.J., 1998. Modelling the elastic properties of softwood. Holz als Roh- und Werkstoff, 56 (1), 43–50. doi:10.1007/s001070050262.
  • Balboni, B.M., et al., 2017. Microwave treatment of Eucalyptus macrorhyncha timber for reducing drying defects and its impact on physical and mechanical wood properties. European Journal of Wood and Wood Products, 76 (3), 861–870. doi:10.1007/s00107-017-1260-1.
  • Börcsök, Z., and Pásztory, Z., 2020. The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey. European Journal of Wood and Wood Products, 79 (3), 511–526. doi:10.1007/s00107-020-01637-3.
  • Chai, Y., et al., 2020. Low-melting-point alloy integration into puffed wood for improving mechanical and thermal properties of wood–metal functional composites. Wood Science and Technology, 54 (3), 637–649. doi:10.1007/s00226-020-01174-5.
  • De Magistris, F., and Salmén, L., 2008. Finite element modelling of wood cell deformation transverse to the fibre axis. Nordic Pulp & Paper Research Journal, 23 (2), 240–246. doi:10.3183/npprj-2008-23-02-p240-246.
  • Deng, Q., Li, S., and Chen, Y., 2012. Mechanical properties and failure mechanism of wood cell wall layers. Computational Materials Science, 62, 221–226. doi:10.1016/j.commatsci.2012.05.050.
  • Donaldson, L., and Xu, P., 2005. Microfibril orientation across the secondary cell wall of radiata pine tracheids. Trees, 19 (6), 644–653. doi:10.1007/s00468-005-0428-1.
  • Ekevad, M., Lundgren, N., and Flodin, J., 2011. Drying shrinkage of sawn timber of Norway spruce (Picea abies): industrial measurements and finite element simulations. Wood Material Science and Engineering, 6 (1-2), 41–48. doi:10.1080/17480272.2010.523121.
  • Elder, R.L., Eure, J.A., and Nicolls, J.W., 2016. Radiation leakage control of industrial microwave power devices. Journal of Microwave Power, 9 (2), 51–61. doi:10.1080/00222739.1974.11688901.
  • Facca, A.G., Kortschot, M.T., and Yan, N., 2006. Predicting the elastic modulus of natural fibre reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 37 (10), 1660–1671. doi:10.1016/j.compositesa.2005.10.006.
  • Fan, Z., et al., 2022. Analysis of influencing factors on sound absorption capacity in microwave-treated Pinus radiata wood. European Journal of Wood and Wood Products, 80 (4), 985–995. doi:10.1007/s00107-021-01774-3.
  • Harrington, J.J., Astley, R.J., and Booker, R., 1998. Modelling the elastic properties of softwood. Holz als Roh- und Werkstoff, 56 (1), 37–41. doi:10.1007/pl00002608.
  • Hassel, B.I., et al., 2009. The single cube apparatus for shear testing – full-field strain data and finite element analysis of wood in transverse shear. Composites Science and Technology, 69 (7-8), 877–882. doi:10.1016/j.compscitech.2008.11.013.
  • He, S., et al., 2014. Microwave treatment for enhancing the liquid permeability of Chinese Fir. BioResources, 9 (2), 1924–1938.
  • He, X., 2020. The research on characteristics and mechanism of poplar wood during high-intensity microwave pretreatment (in Chinese). Dissertation. Central South University of Forestry & Technology, Changsha, China.
  • Hillis, W.E., and Rozsa, A.N., 1978. The softening temperatures of wood. Holzforschung, 32 (2), 68–73. doi:10.1515/hfsg.1978.32.2.68.
  • Hong, C., et al., 2022. Laminated bamboo lumber in compression perpendicular to the grain direction: experimental investigation and the finite element analysis. Wood Material Science & Engineering, 18 (4), 1302–1318. doi:10.1080/17480272.2022.2129447.
  • Hu, W., Liu, Y., and Konukcu, A.C., 2022. Study on withdrawal load resistance of screw in wood-based materials: experimental and numerical. Wood Material Science & Engineering, 18 (1), 334–343. doi:10.1080/17480272.2022.2084699.
  • Jäger, A., et al., 2011. The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls. Composites Part A: Applied Science and Manufacturing, 42 (6), 677–685. doi:10.1016/j.compositesa.2011.02.007.
  • Li, X., et al., 2010. A single cell model for pretreatment of wood by microwave explosion. Holzforschung, 64 (5), 633–637. doi:10.1515/hf.2010.095.
  • Li, X., Zhang, B., and Li, W., 2008. Microwave-vacuum drying of wood: model formulation and verification. Drying Technology, 26 (11), 1382–1387. doi:10.1080/07373930802333551.
  • Muzamal, M., Gamstedt, E.K., and Rasmuson, A., 2014. Modeling wood fiber deformation caused by vapor expansion during steam explosion of wood. Wood Science and Technology, 48 (2), 353–372. doi:10.1007/s00226-013-0613-0.
  • Muzamal, M., Gamstedt, E.K., and Rasmuson, A., 2017. Mechanistic study of microstructural deformation and stress in steam-exploded softwood. Wood Science and Technology, 51 (3), 447–462. doi:10.1007/s00226-017-0896-7.
  • Norimoto, M., and Gril, J., 2016. Wood bending using microwave heating. Journal of Microwave Power and Electromagnetic Energy, 24 (4), 203–212. doi:10.1080/08327823.1989.11688095.
  • Qing, H., and Mishnaevsky, L., 2009. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mechanics of Materials, 41 (9), 1034–1049. doi:10.1016/j.mechmat.2009.04.011.
  • Saavedra Flores, E.I., et al., 2015. Analysis of cross-laminated timber by computational homogenisation and experimental validation. Composite Structures, 121, 386–394. doi:10.1016/j.compstruct.2014.11.042.
  • Salmen, L., 2004. Micromechanical understanding of the cell-wall structure. Comptes Rendus Biologies, 327 (9-10), 873–880. doi:10.1016/j.crvi.2004.03.010.
  • Schniewind, A.P., and Barrett, J.D., 1972. Wood as a linear orthotropic viscoelastic material. Wood Science and Technology, 6 (1), 43–57. doi:10.1007/BF00351807.
  • Singh, A.P., Kim, Y.S., and Chavan, R.R., 2019. Relationship of wood cell wall ultrastructure to bacterial degradation of wood. IAWA Journal, 40 (3), 1–26.
  • Sui, W., and Chen, H., 2014. Multi-stage energy analysis of steam explosion process. Chemical Engineering Science, 116, 254–262. doi:10.1016/j.ces.2014.05.012.
  • Tao, X., et al., 2023. Facile strategy for preparing puffed wood-based metal composites with low density and enhanced thermal conduction via high-intensity microwave puffing pretreatment. Industrial Crops and Products, 194, 116388. doi:10.1016/j.indcrop.2023.116388.
  • Terziev, N., et al., 2020. Effect of microwave treatment on the wood structure of Norway spruce and radiata pine. BioResources, 15 (3), 5616–5626. doi:10.15376/biores.15.3.5616-5626.
  • Torgovnikov, G., and Vinden, P., 2009. High-intensity microwave wood modification for increasing permeability. Forest Products Journal, 59 (4), 84–92.
  • Torgovnikov, G., and Vinden, P., 2010. Microwave wood modification technology and its applications. Forest Products Journal, 60 (2), 173–182. doi:10.13073/0015-7473-60.2.173.
  • Vaziri, M., et al., 2014. Three-dimensional finite element modelling of heat transfer for linear friction welding of Scots pine. Wood Material Science & Engineering, 9 (2), 102–109. doi:10.1080/17480272.2014.903297.
  • Vinden, P., Torgovnikov, G., and Hann, J., 2010. Microwave modification of radiata pine railway sleepers for preservative treatment. European Journal of Wood and Wood Products, 69 (2), 271–279. doi:10.1007/s00107-010-0428-8.
  • Wang, D., et al., 2022a. The effects of moisture and temperature on the microwave absorption power of Poplar wood. Forests, 13 (2), 309. doi:10.3390/f13020309.
  • Wang, Z., et al., 2022b. Characterization of wood cell walls treated by high-intensity microwaves: effects on physicochemical structures and micromechanical properties. Industrial Crops and Products, 187, 115341. doi:10.1016/j.indcrop.2022.115341.
  • Weng, X., et al., 2020. Effects of microwave treatment on microstructure of Chinese Fir. Forests, 11 (7), 772. doi:10.3390/f11070772.
  • Xing, X., et al., 2023a. Effect of high-intensity microwave (HIMW) treatment on chemistry of radiata pine. Wood Science and Technology, 57, 1077–1097. doi:10.1007/s00226-023-01487-1.
  • Xing, X., et al., 2023b. Improving gas permeability and characterizing the multi-scale pore size distribution of radiata pine (Pinus radiata D. Don) treated via high-intensity microwave. Wood Science and Technology, 57, 1345–1367. doi:10.1007/s00226-023-01499-x.
  • Xu, E., et al., 2020. Overview of the development of microwave treatment equipment for wood (in Chinese). Forestry Machinery & Woodworking Equipment, 48 (4), 11–17. doi:10.13279/j.cnki.fmwe.2020.0038.
  • Zhang, Y., Lin, L., and Fu, F., 2021. High-permeability wood with microwave remodeling structure. Forests, 12 (11), 1432. doi:10.3390/f12111432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.