29
Views
0
CrossRef citations to date
0
Altmetric
Original Article

The effect of using wood chips exposed to mold fungi on the properties of chipboard

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 920-930 | Received 03 Oct 2023, Accepted 01 Dec 2023, Published online: 03 Jan 2024

References

  • Ahmed, S.A., Sehlstedt-Persson, M., and Morén, T., 2013. Development of a new rapid method for mould testing in a climate chamber: preliminary tests. European Journal of Wood and Wood Products, 71, 451–461. doi:10.1007/s00107-013-0697-0.
  • Alakoski, E., et al., 2016. From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass – a short review. Renewable and Sustainable Energy Reviews, 54, 376–383. doi:10.1016/j.rser.2015.10.021.
  • Ayrilmis, N., Kaymakci, A., and Güleç, T., 2015. Potential use of decayed wood in production of wood plastic composite. Industrial Crops and Products, 74, 279–284. doi:10.1016/j.indcrop.2015.04.024.
  • Baharoğlu, M., et al., 2013. Effects of anatomical and chemical properties of wood on the quality of particleboard. Composites Part B: Engineering, 52, 282–285. doi:10.1016/j.compositesb.2013.04.009.
  • Beech, J.C., 1975. The thickness swelling of wood particleboard. Holzforschung, 29 (1), 11–18. doi:10.1515/hfsg.1975.29.1.11.
  • Broda, M., 2020. Natural compounds for wood protection against fungi—a review. Molecules, 25, 3538. doi:10.3390/molecules25153538.
  • Browning, B.L., 1963. The chemistry of wood. Geneva: Interscience.
  • Buśko, M., et al., 2014. The effect of Fusarium inoculation and fungicide application on concentrations of flavonoids (apigenin, kaempferol, luteolin, naringenin, quercetin, rutin, vitexin) in winter wheat cultivars. American Journal of Plant Sciences, 5, 3727–3736. doi:10.4236/ajps.2014.525389.
  • Copak, A., et al., 2021. The impact of post-manufacture treatments on the surface characteristics important for finishing of OSB and particleboard. Forests, 12, 975. doi:10.3390/f12080975.
  • Darwish, S.S., El Hadidi, N., and Mansour, M., 2013. The effect of fungal decay on ficus sycomorus wood. International Journal of Conservation Science, 4 (3), 271–282.
  • EN 113, 2020. Durability of wood and wood-based products – test method against wood destroying basidiomycetes. Brussels: European Committee for Standardization.
  • EN 120, 2011. Wood-based panels-determination of formaldehyde release-extraction method (called perforator method). Brussels: European Committee for Standardization.
  • EN 310, 1999. Wood-based panels-determination of modulus of elasticity in bending and of bending strength. Brussels: European Committee for Standardization.
  • EN 312, 2005. Particleboards specifications: requirements for boards for interior fitments (including furniture) for use in dry conditions. Brussels: European Committee for Standardization.
  • EN 317, 1998. Particleboards and fibreboards – determination of swelling in thickness after immersion in water. Brussels: European Committee for Standardization.
  • EN 319, 1993. Particleboards and fibreboards—determination of tensile strength perpendicular to the plane of the board. Brussels: European Committee for Standardization.
  • EN 323, 1999. Wood-based panels-determination of density. Brussels: European Committee for Standardization.
  • Ergül, E., and Ayrilmis, N., 2014. Effect of outdoor storage conditions of wood chip pile on the technological properties of wood-based panel. Biomass and Bioenergy, 61, 66–72. doi:10.1016/j.biombioe.2013.11.025.
  • Fregoso-Madueño, J.N., et al., 2017. Alternative uses of sawmill industry waste. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23, 243–260. doi:10.5154/r.rchscfa.2016.06.040.
  • Gąsecka, M., et al., 2021. Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula pendula and Quercus robur) treated with dimethylarsinic acid. Chemosphere, 263, 127859. doi:10.1016/j.chemosphere.2020.127859.
  • Ge, S., et al., 2018. Potential use of different kinds of carbon in production of decayed wood plastic composite. Arabian Journal of Chemistry, 11, 838–843. doi:10.1016/j.arabjc.2017.12.026.
  • Góral, T., et al., 2015. Relationships between genetic diversity and Fusarium toxin profiles of winter wheat cultivars. The Plant Pathology Journal, 31, 226–244. doi:10.5423/PPJ.OA.03.2015.0038.
  • Gutarowska, B., and Cichocka, A., 2010. Zastosowanie metody oznaczania ergosterolu do szybkiej oceny zanieczyszczenia grzybami na różnych etapach produkcji papieru. Przegląd Papierniczy, 66, 45–47.
  • Haga, D.I., et al., 2014. Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores. Atmospheric Chemistry and Physics, 14, 8611–8630. doi:10.5194/acp-14-8611-2014.
  • Hamed, S.A.M., 2013. In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. International Biodeterioration & Biodegradation, 78, 98–102. doi:10.1016/j.ibiod.2012.12.013.
  • Hamed, S.A.M., and Mansour, M.M.A., 2018. Comparative study on micromorphological changes in wood due to soft-rot fungi and surface mold. Scitific Culture, 4, 35–41. doi:10.5281/zenodo.1214563.
  • Heritage, C.C., 1954. Adhesive or molding composition comprising brown rotted wood and phenol-formaldehyde resin. Patent US2698307, 28.12.1954.
  • Hukka, A., and Viitanen, H.A., 1999. A mathematical model of mould growth on wooden material. Wood Science and Technology, 33, 475–485. doi:10.1007/s002260050131.
  • Idler, C., Pecenka, R., and Lenz, H., 2019. Influence of the particle size of poplar wood chips on the development of mesophilic and thermotolerant mould during storage and their potential impact on dry matter losses in piles in practice. Biomass and Bioenergy, 127, 105273. doi:10.1016/j.biombioe.2019.105273.
  • Imamura, Y., et al., 1989. Dimensional stability and biological resistance of particleboard from acetylated Albizzia wood particles. Bulletin of the Wood Research Institute Kyoto University, 76, 49–58.
  • Imken, A.A., et al., 2020. Resistance of different wood-based materials against mould fungi: a comparison of methods. European Journal of Wood and Wood Products, 78, 661–671. doi:10.1007/s00107-020-01554-5.
  • Kartal, S.N., Katsumata, N., and Imamura, Y., 2006. Removal of copper, chromium, and arsenic from CCA-treated wood by organic acids released by mold and staining fungi. Forest Products Journal, 56, 33–37.
  • Kawamura, S., and Wang, Q., 2020. Wood-based epoxy resin’s synthesis using decayed woody material from mushroom cultivation. International Journal of Design & Nature and Ecodynamics, 15 (2), 155–160. doi:10.18280/ijdne.150203.
  • Knoll, C.S., Wong, B.M., and Roy, D.N., 1993. The chemistry of decayed aspen wood and perspectives on its utilization. Wood Science and Technology, 27, 439–448. doi:10.1007/BF00193867.
  • Krajewski, A., and Witomski, P., 2016. Ochrona drewna: surowca i materiału. Warsaw: Wydawnictwo SGGW.
  • Krzyżaniak, M., et al., 2014. Willow biomass as feedstock for an integrated multi-product biorefinery. Industrial Crops and Products, 58, 230–237. doi:10.1016/j.indcrop.2014.04.033.
  • Kuptz, D., et al., 2020. Fuel properties, dry matter losses and combustion behavior of wood chips stored at aerobic and anaerobic conditions. Biomass and Bioenergy, 142, 105745. doi:10.1016/j.biombioe.2020.105745.
  • Kusiak, W., et al., 2020. Evaluation of environmental impact on selected properties of lime (Tilia Cordata Mill.) wood. Forests, 11, 746. doi:10.3390/f11070746.
  • Kwaśniewska-Sip, P., Cofta, G., and Nowak, P.B., 2018. Resistance of fungal growth on Scots pine treated with caffeine. International Biodeterioration & Biodegradation, 132, 178–184. doi:10.1016/j.ibiod.2018.03.007.
  • Lenz, H., et al., 2016. Development and test of a simplified method to calculate dry matter loss during open-air storage of poplar wood chips by analysing ash contents. Biomass and Bioenergy, 94, 258–267. doi:10.1016/j.biombioe.2016.09.011.
  • Li, K., and Geng, X., 2005. Formaldehyde-free wood adhesives from decayed wood. Macromolecular Rapid Communications, 26, 529–532. doi:10.1002/marc.200400594.
  • Lie, S.K., et al., 2019. Can existing mould growth models be used to predict mould growth on wooden claddings exposed to transient wetting? Building and Environment, 152, 192–203. doi:10.1016/j.buildenv.2019.01.056.
  • Lieskovský, M., et al., 2017. Biological risks from long-term storage of wood chips. Polish Journal of Environmental Studies, 26 (6), 2633–2641. doi:10.15244/pjoes/70630.
  • Lieskovský, M., and Gejdoš, M., 2023. Monitoring of respiratory health risks caused by biomass storage in urban-type heating plants. Forests, 14, 707. doi:10.3390/f14040707.
  • Mansour, M.M., et al., 2020. Illustration of the effects of five fungi on Acacia saligna wood organic acids and ultrastructure alterations in wood cell walls by HPLC and TEM examinations. Applied Sciences, 10, 2886. doi:10.3390/app10082886.
  • Mat Aron, N.S., et al., 2020. Sustainability of the four generations of biofuels – a review. International Journal of Energy Research, 44, 9266–9282. doi:10.1002/er.5557.
  • Mirski, R., et al., 2019. Effects of a chipboard structure on its physical and mechanical properties. Materials, 12, 3777. doi:10.3390/ma12223777.
  • Mirski, R., et al., 2020a. Effects of chip type on the properties of chip–sawdust boards glued with polymeric diphenyl methane diisocyanate. Materials, 13, 1329. doi:10.3390/ma13061329.
  • Mirski, R., et al., 2020b. By-products of sawmill industry as raw materials for manufacture of chip-sawdust boards. Journal of Building Engineering, 32, 101460. doi:10.1016/j.jobe.2020.101460.
  • Mirski, R., et al., 2020c. The application of oak bark powder as a filler for melamine-urea-formaldehyde adhesive in plywood manufacturing. Forests, 11, 1249. doi:10.3390/f11121249.
  • Mirski, R., et al., 2022a. The possibility of using pine bark particles in the chipboard manufacturing process. Materials, 15, 5731. doi:10.3390/ma15165731.
  • Mirski, R., et al., 2022b. Mold fungi development during the short-term wood-chips storage depending on the storage method. Wood Material Science & Engineering, doi:10.1080/17480272.2022.2124124.
  • Mirski, R., et al., 2023. Selected chemical and physical properties of pine wood chips inoculated with Aspergillus and Penicillium mold fungi. Drvna Industrija, 74 (2), 317–326. doi:10.5552/drvind.2023.0076.
  • Mydlarz, K., and Wieruszewski, M., 2022. Economic, technological as well as environmental and social aspects of local use of wood by-products generated in sawmills for energy purposes. Energies, 15, 1337. doi:10.3390/en15041337.
  • Nemli, G., et al., 2018. Utilization potential of waste wood subjected to insect and fungi degradation for particleboard manufacturing. European Journal of Wood and Wood Products, 76, 759–766. doi:10.1007/s00107-017-1224-5.
  • Nemli, G., and Demirel, S., 2007. Relationship between the density profile and the technological properties of the particleboard composite. Journal of Composite Materials, 41, 1793–1802. doi:10.1177/0021998307069892.
  • Nilsson, T., 2009. Biological wood degradation, pulp and paper chemistry and technology. Wood Chemistry and Wood Biotechnology, 1, 121–144.
  • Pecenka, R., Lenz, H., and Idler, C., 2018. Influence of the chip format on the development of mass loss, moisture content and chemical composition of poplar chips during storage and drying in open-air piles. Biomass and Bioenergy, 116, 140–150. doi:10.1016/j.biombioe.2018.06.005.
  • Pędzik, M., et al., 2021. The dynamics of mycobiota development in various types of wood dust depending on the dust storage conditions. Forests, 12, 1786. doi:10.3390/f12121786.
  • Piontek, M., 1999. Grzyby pleśniowe: atlas. Zielona Góra: Wydawnictwo Politechniki Zielonogórskiej.
  • Plassard, C., and Fransson, P., 2009. Regulation of low-molecular weight organic acid production in fungi. Fungal Biology Reviews, 23, 30–39. doi:10.1016/j.fbr.2009.08.002.
  • Rowell, R.M., 2005. Handbook of wood chemistry and wood composites. Boca Raton, FL: CRC Press.
  • Salem, M.Z., 2016. EDX measurements and SEM examination of surface of some imported woods inoculated by three mold fungi. Measurement, 86, 301–309. doi:10.1016/j.measurement.2016.03.008.
  • Schmidt, O., 2006. Wood and tree fungi: biology, damage, protection, and Use. Berlin: Springer-Verlag.
  • Stangierska, A., Zabielska-Matejuk, J., and Frackowiak, I., 2013. The assessment of the resistance of particleboard protected with ionic liquids to basidiomycetes and mould fungi. Annals of Warsaw University of Life Science, Forestry and Wood Technology, 84, 190–193.
  • Stuper-Szablewska, K., et al., 2019. Określenie wpływu zanieczyszczenia ziarna pszenicy grzybami mikroskopowymi oraz ich metabolitami na jakość produktów jego przerobu. Nauka Przyroda Technologie, 13, 43–55. doi:10.17306/J.NPT.2019.1.5.
  • Stuper-Szablewska, K., Rogoziński, T., and Perkowski, J., 2017. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents. Archives of Industrial Hygiene and Toxicology, 68, 127–134. doi:10.1515/aiht-2017-68-2924.
  • Surmiński, J., 2006. Zarys chemii drewna. Poznań: Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu.
  • Szwajkowska-Michałek, L., et al., 2020. Wood processing waste–contamination with microscopic fungi and contents of selected bioactive compounds. BioResources, 15, 1763–1772. doi:10.15376/biores.15.1.1763-1772.
  • Taghiyari, H.R., et al., 2020. Formaldehyde emission in micron-sized wollastonite-treated plywood bonded with soy flour and urea-formaldehyde resin. Applied Sciences, 10, 6709. doi:10.3390/app10196709.
  • TAPPI. 2001. Pentosanes in wood and pulp T 223 cm-01 in U.T.A.o.P.a.P. industry. Atlanta, GA: TAPPI.
  • TAPPI. 2006. Acid insoluble lignin in wood and pulp T 222 om-06 in U.T.A.o.P.a.P. industry. Atlanta, GA: TAPPI.
  • TAPPI. 2007a. Preparation of wood for chemical analysis T 264 cm-07 in U.T.A.o.P.a.P. industry. Atlanta, GA: TAPPI.
  • TAPPI. 2007b. Solvent extractives of wood and pulp T 204 om-07 in U.T.A.o.P.a.P. industry. Atlanta, GA: TAPPI.
  • TAPPI. 2016. Ash in wood, pulp, paper and paperboard: combustion at 525°C. T 211 om-16 in U.T.A.o.P.a.P. industry. Atlanta, GA: TAPPI.
  • Waliszewska, B., et al., 2019. Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose, 26, 6303–6315. doi:10.1007/s10570-019-02511-z.
  • Wieruszewski, M., et al., 2023. Economic efficiency of pine wood processing in furniture production. Forests, 14, 688. doi:10.3390/f14040688.
  • Wronka, A., and Kowaluk, G., 2022. Upcycling different particle sizes and contents of pine branches into particleboard. Polymers, 14, 4559. doi:10.3390/polym14214559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.