114
Views
0
CrossRef citations to date
0
Altmetric
Brief Original

The influence of chemical content and pressing temperature on the properties of citric acid-bonded particleboards from softwood sawmilling residues

ORCID Icon, ORCID Icon & ORCID Icon
Pages 987-992 | Received 30 Apr 2024, Accepted 10 Jun 2024, Published online: 29 Jun 2024

References

  • Azeredo, H.M.C., et al., 2015. Wheat straw hemicellulose films as affected by citric acid. Food Hydrocolloids, 50, 1–6. https://doi.org/10.1016/j.foodhyd.2015.04.005
  • CEN, 1993a. EN 310; wood-based panels—determination of modulus of elasticity in bending and of bending strength. Brussels: European Committee for Standardization.
  • CEN, 1993b. EN 319; particleboards and fibreboards—determination of tensile strength perpendicular to the plane of the board. Brussels: European Committee for Standardization.
  • CEN, 1993c. EN 317; particleboards and fibreboards—determination of swelling in thickness after immersion in water. Brussels: European Committee for Standardization.
  • CEN, 2010. EN 312; particleboards-specifications. Brussels: European Committee for Standardization.
  • Ding, Z., et al., 2021. Acidic buffering capacity and curing process of melamine-urea-formaldehyde resin. International Journal of Adhesion and Adhesives, 104, 102756. https://doi.org/10.1016/j.ijadhadh.2020.102756
  • Dunky, M., 1998. Urea–formaldehyde (UF) adhesive resins for wood. International Journal of Adhesion and Adhesives, 18, 95–107.
  • EPF, 2017. Annual Report 2016–2017. Brussels: EPF.
  • Fehrmann, J., et al., 2024. Effects of mat composition and pressing time on citric acid-bonded ultra-low-density hemp hurd particleboard. Industrial Crops and Products, 210, 118070. https://doi.org/10.1016/j.indcrop.2024.118070
  • Ferrandez-Garcia, M.T., et al., 2019. Experimental evaluation of a new giant reed (arundo donax L.) composite using citric acid as a natural binder. Agronomy, 9 (12), 882. https://doi.org/10.3390/agronomy9120882
  • Food and Agriculture Organization of the United Nations, 2024. FAOSTAT Statistical Database. Available from: https://www.fao.org/faostat/en/#data/FO [Accessed 29 May 2024].
  • Gomes, M.G., et al., 2020. Pretreated sugarcane bagasse with citric acid applied in enzymatic hydrolysis. Industrial Biotechnology, 16 (2), 117–124. https://doi.org/10.1089/ind.2019.0039
  • Huaxu, Z., et al., 2021. Physico-Mechanical and biological durability of citric acid-bonded rubberwood particleboard. Polymers, 13 (1), 98. https://doi.org/10.3390/polym13010098
  • Kanazawa, A., et al., 2010. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air, 20, 72–84.
  • Korai, H., 2021. Difficulty of internal bond prediction of particleboard using the density profile. Journal of Wood Science, 67 (1), 64. https://doi.org/10.1186/s10086-021-01994-4
  • Krug, D., et al., 2023. Particle-based materials. In: P. Niemz, A. Teischinger, and D. Sandberg, eds. Springer handbook of wood science and technology. Cham: Springer International Publishing, 1409–1490. https://doi.org/10.1007/978-3-030-81315-4_27
  • Kusumah, S.S., et al., 2016. Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard I: effects of pre-drying treatment and citric acid content on the board properties. Industrial Crops and Products, 84, 34–42. https://doi.org/10.1016/j.indcrop.2016.01.042
  • Kusumah, S.S., et al., 2017. Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard II: influences of pressing temperature and time on particleboard properties. Journal of Wood Science, 63 (2), 161–172. https://doi.org/10.1007/s10086-016-1605-0
  • Lee, S.H., et al., 2020. A review on citric acid as green modifying agent and binder for wood. Polymers, 12 (8), 1692. Article 8. https://doi.org/10.3390/polym12081692
  • McSweeny, J.D., Rowell, R.M., and Min, S.-H., 2006. Effect of citric acid modification of aspen wood on sorption of copper Ion. Journal of Natural Fibers, 3 (1), 43–58. https://doi.org/10.1300/J395v03n01_05
  • Nitu, I.P., et al., 2022. Preparation and properties of jute stick particleboard using citric acid–glycerol mixture as a natural binder. Journal of Wood Science, 68 (1), 30. https://doi.org/10.1186/s10086-022-02039-0
  • Notowiharjo, I., et al., 2022. Investigation of optimum particles size and citric acid content for coconut husk particleboard manufacturing. AIP Conference Proceedings, 2454, 020018. https://doi.org/10.1063/5.0078508
  • Prasetiyo, K.W., et al., 2020. The potential of using agricultural waste: corn husk for particleboard raw material. IOP Conference Series: Earth and Environmental Science, 591 (1), 012011. https://doi.org/10.1088/1755-1315/591/1/012011.
  • Rackwitz, G., 1963. Der Einfluß der Spanabmessungen auf einige Eigenschaften von Holzspanplatten. Holz als Roh- und Werkstoff, 21 (6), 200–209. https://doi.org/10.1007/BF02609724
  • Santoso, M., et al., 2017. Bonding performance of maltodextrin and citric acid for particleboard made from nipa fronds. Journal of the Korean Wood Science and Technology, 45 (4), 432–443. https://doi.org/10.5658/WOOD.2017.45.4.432
  • Santoso, M., et al., 2020. Effect of pressing temperatures on bonding properties of sucrose-citric acid for nipa palm fronds particleboard. Wood Research, 65 (5), 747–756. https://doi.org/10.3776/3wr.1336-4561/65.5.747756
  • Scharf, A., et al., 2023. Particleboards bonded by an imidazole-based adhesive system. Materials, 16 (22), 7201. https://doi.org/10.3390/ma16227201
  • Syamani, F.A., et al., 2018. Effect of pre-drying time and citric acid content on Imperata cylindrica particleboards properties. IOP Conference Series: Earth and Environmental Science, 209, 012034. https://doi.org/10.1088/1755-1315/209/1/012034
  • Syamani, F.A., et al., 2020. High quality sugarcane bagasse-citric acid particleboards. IOP Conference Series: Earth and Environmental Science, 415 (1), 012006. https://doi.org/10.1088/1755-1315/415/1/012006
  • Syamani, F.A., et al., 2022. Utilization of citric acid as bonding agent in sembilang bamboo (dendrocalamus giganteus munro) particleboard production. Indonesian Journal of Forestry Research, 9 (1), 99–120. https://doi.org/10.2088/6ijfr.2022.9.1.99-120
  • Umemura, K., et al., 2012a. Application of citric acid as natural adhesive for wood. Journal of Applied Polymer Science, 123 (4), 1991–1996. https://doi.org/10.1002/app.34708
  • Umemura, K., Ueda, T., and Kawai, S., 2012b. Characterization of wood-based molding bonded with citric acid. Journal of Wood Science, 58 (1), 38–45. Article 1. https://doi.org/10.1007/s10086-011-1214-x
  • Umemura, K., Ueda, T., and Kawai, S., 2012c. Effects of moulding temperature on the physical properties of wood-based moulding bonded with citric acid. Forest Products Journal, 62 (1), 63–68.
  • Umemura, K., Sugihara, O., and Kawai, S., 2015. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard II: effects of board density and pressing temperature. Journal of Wood Science, 61 (1), 40–44.
  • Widodo, E., et al., 2020. Development of moulding using sweet sorghum bagasse and citric acid: effects of application method and citric acid content. Forest Products Journal, 70 (2), 151–157. https://doi.org/10.1307/3FPJ-D-19-00060
  • Widyorini, R., et al., 2013. Characteristic of bamboo particleboard bonded with citric acid. Wood Research Journal, 4 (1), 31–35. https://doi.org/10.5185/0wrj.2013.4.1.31-35
  • Widyorini, R., et al., 2014. Improving the physico-mechanical properties of eco-friendly composite made from bamboo. Advanced Materials Research, 896, 562–565. https://doi.org/10.4028/www.scientific.net/AMR.896.562.
  • Widyorini, R., et al., 2016a. Bonding ability of a new adhesive composed of citric acid-sucrose for particleboard. BioResources, 11 (2), 4526–4535. https://doi.org/10.1537/6biores.11.2.4526-4535
  • Widyorini, R., et al., 2016b. Manufacture and properties of citric acid-bonded particleboard made from bamboo materials. European Journal of Wood and Wood Products, 74 (1), 57–65. https://doi.org/10.1007/s00107-015-0967-0
  • Widyorini, R., et al., 2018. Properties of citric acid-bonded composite board from elephant dung fibers. Journal of the Korean Wood Science and Technology, 46 (2), 132–142. https://doi.org/10.5658/WOOD.2018.46.2.132