760
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical, hydrological and microstructural assessment of the durability of cemented paste backfill containing alkali-activated slag

&
Pages 123-143 | Received 25 Jul 2016, Accepted 25 Sep 2016, Published online: 06 Oct 2016

References

  • H.J.C. Celestin, Geotechnical properties of cemented paste backfill and tailings liners: effect of mix components and temperature, Master Thesis, Ottowa-Carleton Institute for Civil Engineering, University of Ottowa, 2008, p. 222.
  • F. Cihangir, Investigation of utilization of alkali-activated blast furnace slag as binder in paste backfill, PhD Thesis, Karadeniz Technical University, Turkey, 2011, p. 187.
  • D. Wu, M. Fall, and S.J. Cai, Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill, Miner. Eng. 42 (2013), pp. 76–87. doi:10.1016/j.mineng.2012.11.011.
  • E. Yilmaz, T. Belem, and M. Benzaazoua, Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill, Eng. Geol. 168 (2014), pp. 23–37. doi:10.1016/j.enggeo.2013.10.024.
  • D. Wu, S. Cai, and G. Huang, Coupled effect of cement hydration and temperature on rheological properties of fresh cemented tailings backfill slurry, Trans. Nonferrous. Met. Soc. China. 24 (2014), pp. 2954–2963. doi:10.1016/S1003-6326(14)63431-2.
  • W. Sui, D. Zhang, Z.C. Cui, and Z. Wu, Environmental implications of mitigating overburden failure and subsidences using paste-like backfill mining: a case study, Int. J. Mining. Reclam. Environ. 29 (2015), pp. 521–543. doi:10.1080/17480930.2014.969049.
  • M.Z. Emad, H. Mitri, and C. Kelly, State-of-the-art review of backfill practices for sublevel stoping system, Int. J. Mining. Reclam. Environ. 29 (2015), pp. 544–556. doi:10.1080/17480930.2014.889363.
  • M. Benzaazoua, M. Fall, and T. Belem, A contribution to understanding the hardening process of cemented pastefill, Miner. Eng. 17 (2004), pp. 141–152. doi:10.1016/j.mineng.2003.10.022.
  • B. Ercikdi, H. Baki, and M. Izki, Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill, J. Environ. Manage. 115 (2013), pp. 5–13. doi:10.1016/j.jenvman.2012.11.014.
  • E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater. 75 (2015), pp. 99–111. doi:10.1016/j.conbuildmat.2014.11.008.
  • D. Simon and M. Grabinsky, Apparent yield stress measurement in cemented paste backfill, Int. J. Mining. Reclam. Environ. 27 (2013), pp. 231–256. doi:10.1080/17480930.2012.680754.
  • J.C.H. Célestin and M. Fall, Thermal conductivity of cemented paste backfill material and factors affecting it, Int. J. Mining. Reclam. Environ. 23 (2009), pp. 274–290. doi:10.1080/17480930902731943.
  • B. Ercikdi, A. Kesimal, F. Cihangir, H. Deveci, and I. Alp, Cemented paste backfill of sulphide-rich tailings: importance of binder type and dosage, Cem. Concr. Compos. 31 (2009), pp. 268–274. doi:10.1016/j.cemconcomp.2009.01.008.
  • F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng. 30 (2012), pp. 33–43. doi:10.1016/j.mineng.2012.01.009.
  • F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Alkali-activated binders: a review. Part 2. About materials and binders manufacture, Constr. Build. Mater. 22 (2008), pp. 1315–1322. doi:10.1016/j.conbuildmat.2007.03.019.
  • F. Pacheco-Torgal, Z. Abdollahnejad, A.F. Camões, M. Jamshidi, and Y. Ding, Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue?, Constr. Build. Mater. 30 (2012), pp. 400–405. doi:10.1016/j.conbuildmat.2011.12.017.
  • O. Peyronnard and M. Benzaazoua, Alternative by-product based binders for cemented mine backfill: recipes optimisation using Taguchi method, Miner. Eng. 29 (2012), pp. 28–38. doi:10.1016/j.mineng.2011.12.010.
  • B. Ercikdi, G. Külekci, and T. Yılmaz, Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings, Constr. Build. Mater. 93 (2015), pp. 573–583. doi:10.1016/j.conbuildmat.2015.06.042.
  • B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and I. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, J. Hazard. Mater. 168 (2009), pp. 848–856. doi:10.1016/j.jhazmat.2009.02.100.
  • B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and I. Alp, Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings, Waste. Manag. Res. 28 (2010), pp. 430–435. doi:10.1177/0734242X09351905.
  • C. Shi and A. Fernández-Jiménez, Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements, J. Hazard. Mater. 137 (2006), pp. 1656–1663. doi:10.1016/j.jhazmat.2006.05.008.
  • Z. Yunsheng, S. Wei, C. Qianli, and C. Lin, Synthesis and heavy metal immobilization behaviors of slag based geopolymer, J. Hazard. Mater. 143 (2007), pp. 206–213. doi:10.1016/j.jhazmat.2006.09.033.
  • C. Shi, P.V. Krivenko, and D. Roy, Alkali-Activated Cements and Concretes, Taylor and Francis, London, 2006.10.4324/9780203390672
  • J. Zhang, J.L. Provis, D. Feng, and J.S.J. van Deventer, Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+, J. Hazard. Mater. 157 (2008), pp. 587–598. doi:10.1016/j.jhazmat.2008.01.053.
  • R.R. Lloyd, J.L. Provis, K.J. Smeaton, and J.S.J. van Deventer, Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion, Microporous. Mesoporous. Mater. 126 (2009), pp. 32–39. doi:10.1016/j.micromeso.2009.05.016.
  • M.A. Cincotto, A.A. Melo and W.L. Repette, Effect of Different Activators Type and Dosages and Relation To Autogenous Shrinkage of Activated Blast Furnace Slag Cement, in 11th International Congress on the Chemistry of Cement, Durban, South Africa, 2003, pp. 1878–1888.
  • D.A. Landriault, Paste backfill mix design for Canadian underground hard rock mining, in Proceedings Of the 97th Annual General Meeting of the CIM Rock Mechanics and Strata Control Session, Nova Scotia, Canada, 1995, pp. 652–663.
  • M. Benzaazoua, J. Ouellet, S. Servant, P. Newman, and R. Verburg, Cementitious backfill with high sulfur content physical, chemical, and mineralogical characterization, Cem. Concr. Res. 29 (1999), pp. 719–725. doi:10.1016/S0008-8846(99)00023-X.
  • S. Ouellet, B. Bussière, M. Mbonimpa, M. Benzaazoua, and M. Aubertin, Reactivity and mineralogical evolution of an underground mine sulphidic cemented paste backfill, Miner. Eng. 19 (2006), pp. 407–419. doi:10.1016/j.mineng.2005.10.006.
  • M. Nehdi and A. Tariq, Developing durable paste backfill from sulphidic tailings, Proc. ICE-Waste Resour. Manag. 160 (2007), pp. 155–166. doi:10.1680/warm.2007.160.4.155.
  • B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and I. Alp, Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings, J. Hazard. Mater. 179 (2010), pp. 940–946. doi:10.1016/j.jhazmat.2010.03.096.
  • M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos. 32 (2010), pp. 819–828. doi:10.1016/j.cemconcomp.2010.08.002.
  • M. Pokharel and M. Fall, Coupled thermochemical effects on the strength development of slag-paste backfill materials, J. Mater. Civ. Eng. 23 (2011), pp. 511–525. doi:10.1061/(ASCE)MT.1943-5533.0000192.
  • M. Pokharel and M. Fall, Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill, Cem. Concr. Compos. 38 (2013), pp. 21–28. doi:10.1016/j.cemconcomp.2013.03.015.
  • F.W. Brackebusch, Basics of paste backfill systems, Min. Eng. 46 (1994), pp. 1175–1178.
  • X. Ke, H. Hou, M. Zhou, Y. Wang, and X. Zhou, Effect of particle gradation on properties of fresh and hardened cemented paste backfill, Constr. Build. Mater. 96 (2015), pp. 378–382. doi:10.1016/j.conbuildmat.2015.08.057.
  • F. Cihangir, A. Kesimal, H. Deveci, B. Ercikdi, and Y. Akyol, Investigation of the microstructural and performance properties of paste backfill containing alkali-activated slag, Research Project, Project no: ARGEBD–8629, Karadeniz Technical University, Turkey, 2015.
  • E. Yilmaz, Investigating the strength properties of paste backfill samples prepared using sulphide-bearing mine tailings, Master Thesis, Karadeniz Technical University, Turkey, 2003, p. 92.
  • M. Fall, M. Benzaazoua, and S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Miner. Eng. 18 (2005), pp. 41–44. doi:10.1016/j.mineng.2004.05.012.
  • M. Aachib, M. Mbonimpa, and M. Aubertin, Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers, Water Air Soil Pollut. 156 (2004), pp. 163–193. doi:10.1023/B:WATE.0000036803.84061.e5.
  • M. Fall, D. Adrien, J.C. Célestin, M. Pokharel, and M. Touré, Saturated hydraulic conductivity of cemented paste backfill, Miner. Eng. 22 (2009), pp. 1307–1317. doi:10.1016/j.mineng.2009.08.002.
  • A. Kesimal, B. Ercikdi, and E. Yilmaz, The effect of desliming by sedimentation on paste backfill performance, Miner. Eng. 16 (2003), pp. 1009–1011. doi:10.1016/S0892-6875(03)00267-X.
  • A. Kesimal, F. Cihangir, B. Ercikdi, H. Deveci, and I. Alp, Optimization of paste backfill performance for different ore types in Cayeli Copper Mine, Karadeniz Technical University, Revolving Fond Project, Turkey, 2010.
  • T. Belem, B. Bussière, and M. Benzaazoua, The effect of microstructural evolution on the physical properties of paste backfill, in: Proc Tailings Mine Waste, Balkema, Rotterdam, 2001: pp. 5809–5818. Available at http://www.polymtl.ca/enviro-geremi/pdf/articles/Belem_et_al_2002.pdf.
  • N. Sivakugan, R.M. Rankine, K.J. Rankine, and K.S. Rankine, Geotechnical considerations in mine backfilling in Australia, J. Clean. Prod. 14 (2006), pp. 1168–1175. doi:10.1016/j.jclepro.2004.06.007.
  • M. Benzaazoua, T. Belem, and B. Bussière, Chemical factors that influence the performance of mine sulphidic paste backfill, Cem. Concr. Res. 32 (2002), pp. 1133–1144. doi:10.1016/S0008-8846(02)00752-4.
  • A. Kesimal, H. Deveci, B. Ercikdi, and F. Cihangir, Evaluation of paste backfill performance of different mill tailings in Kure Copper Mine, Karadeniz Technical University, Revolving Fond Project, Turkey, 2012.
  • B. Ercikdi, T. Yılmaz, and G. Külekci, Strength and ultrasonic properties of cemented paste backfill, Ultrasonics. 54 (2014), pp. 195–204. doi:10.1016/j.ultras.2013.04.013.
  • E. Yilmaz, T. Belem, M. Benzaazoua, A. Kesimal, and B. Ercikdi, Evaluation of the strength properties of deslimed tailings paste backfill, Miner. Resour. Eng. 12 (2007), pp. 129–144.
  • E. Yilmaz, Microstructural evolution of consolidated and unconsolidated cemented paste backfills by SEM-EDS analysis, in 24th International Mining Congress and Exhibition of Turkey, Antalya, Turkey, 2015, pp. 1211–1223.
  • J.J. Cilliers and A.L. Hinde, An improved hydrocyclone model for backfill preparation, Miner. Eng. 4 (1991), pp. 683–693.10.1016/0892-6875(91)90057-3
  • D.A. Landriault, Backfill in Underground Mining: Underground Mining Methods Engineering Fundamentals and International Case Studies, in Society for Mining, Metallurgy, and Exploration, W. Hustrulid and R.L. Bulloch, eds., Met Explor, Lilleton, CO, 2001, pp. 601–614.
  • K. Terzaghi and R.B. Peck, Soil Mechanism in Engineering Practice, John Wiley, New York, NY, 1967.
  • ASTM D854-14, Standard test methods for specific gravity of soil solids by water pycnometer, ASTM Int. (2014), pp. 1–8. doi:10.1520/D0854-10.
  • E. Bauné, C. Bonnet, and S. Liu, Reconsidering the basicity of a FCAW consumable – part 1: solidified slag composition of a FCAW consumable as a basicity indicator, Weld. Res. Suppl. 79 (2000), pp. 57–65.
  • ASTM C188-14, Standard test method for density of hydraulic cement, (2011). doi:10.1520/C0188-09.10.1520/C0188-14.2.
  • TS EN 196-6, Methods of testing cement – part 6: determination of fineness, (2010).
  • F. Cihangir, B. Ercikdi, A. Kesimal, H. Deveci, and F. Erdemir, Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: effect of activator nature, concentration and slag properties, Miner. Eng. 83 (2015), pp. 117–127. doi:10.1016/j.mineng.2015.08.022.
  • ASTM C143/C143M-12, Standard test method for slump of hydraulic-cement concrete, (2012). doi:10.1520/C0143.
  • ASTM C39/C39M-14a, Standard test method for compressive strength of cylindrical concrete specimens, (2012). doi:10.1520/C0039.
  • ASTM D4404-10, Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry, (2010). doi:10.1520/D4404-10.
  • IUPAC, Manual of symbols and terminology. Appendix 2-part 1: colloid and surface chemistry, J. Pure Appl. Chem. 31 (1972) 578–593.
  • ASTM D5084-03, Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter, (2003). doi:10.1520/D5084-03.1.3.2.
  • J.J. Assaad and J. Harb, Use of the falling-head method to assess permeability of freshly mixed cementitious-based materials, J. Mater. Civ. Eng. (2013), pp. 1–11. doi:10.1061/(ASCE)MT.1943-5533.0000630.
  • E.O. Fridjonsson, A. Hasan, A.B. Fourie, and M.L. Johns, Pore structure in a gold mine cemented paste backfill, Miner. Eng. 53 (2013), pp. 144–151. doi:10.1016/j.mineng.2013.07.017.
  • N.B. Winter, Scanning Electron Microscopy of Cement and Concrete, WHD Microanalysis Consultants Ltd., Suffolk, 2012. (ISBN-13: 978-0-9571045-1-8).
  • J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, and J.R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed., Springer, New York, NY, 2003.10.1007/978-1-4615-0215-9
  • B.J. Mohr, J.J. Biernacki, and K.E. Kurtis, Microstructural and chemical effects of wet/dry cycling on pulp fiber-cement composites, Cem. Concr. Res. 36 (2006), pp. 1240–1251. doi:10.1016/j.cemconres.2006.03.020.
  • A.S. de Vargas, D.C.C. Dal Molin, A.B. Masuero, A.C.F. Vilela, J. Castro-Gomes, and R.M. Gutierrez, Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators, Cem. Concr. Compos. 53 (2014), pp. 341–349. doi:10.1016/j.cemconcomp.2014.06.012.
  • K. Gu, F. Jin, A. Al-Tabbaa, B. Shi, and J. Liu, Mechanical and hydration properties of ground granulated blastfurnace slag pastes activated with MgO-CaO mixtures, Constr. Build. Mater. 69 (2014), pp. 101–108. doi:10.1016/j.conbuildmat.2014.07.032.
  • E. Deir, B.S. Gebregziabiher, and S. Peethamparan, Influence of starting material on the early age hydration kinetics, microstructure and composition of binding gel in alkali activated binder systems, Cem. Concr. Compos. 48 (2014), pp. 108–117. doi:10.1016/j.cemconcomp.2013.11.010.
  • H.T. Cao, L. Bucea, A. Ray, and S. Yozghatlian, The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements, Cem. Concr. Compos. 19 (1997), pp. 161–171. doi:10.1016/S0958-9465(97)00011-5.
  • K.M.A. Hossain and M. Lachemi, Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment, Cem. Concr. Res. 36 (2006), pp. 1123–1133. doi:10.1016/j.cemconres.2006.03.010.
  • M.M. Hossain, M.R. Karim, M.K. Hossain, M.N. Islam, and M.F.M. Zain, Durability of mortar and concrete containing alkali-activated binder with pozzolans: a review, Constr. Build. Mater. 93 (2015), pp. 95–109. doi:10.1016/j.conbuildmat.2015.05.094.
  • F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Alkali-activated binders: a review. Part 1. Historical backround, terminology, reaction mechanisms and hydration products, Constr. Build. Mater. 22 (2008), pp. 1305–1314. doi:10.1016/j.conbuildmat.2007.10.015.
  • A. Ghirian and M. Fall, Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments. Part II: mechanical, chemical and microstructural processes and characteristics, Eng. Geol. 170 (2014), pp. 11–23. doi:10.1016/j.enggeo.2013.12.004.
  • T. Yilmaz, B. Ercikdi, K. Karaman, and G. Kulekci, Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test, Ultrasonics. 54 (2014), pp. 1386–1394. doi:10.1016/j.ultras.2014.02.012.
  • B. Singh, G. Ishwarya, M. Gupta, and S.K. Bhattacharyya, Geopolymer concrete: a review of some recent developments, Constr. Build. Mater. 85 (2015), pp. 78–90. doi:10.1016/j.conbuildmat.2015.03.036.
  • T.C. Powers, Structure and physical properties of hardened portland cement paste, J. Am. Ceram. Soc. 41 (1958), pp. 1–6. doi:10.1111/j.1151-2916.1958.tb13494.x.
  • M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol. 114 (2010), pp. 397–413. doi:10.1016/j.enggeo.2010.05.016.
  • E. Yilmaz, T. Belem, B. Bussière, and M. Benzaazoua, Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills, Cem. Concr. Compos. 33 (2011), pp. 702–715. doi:10.1016/j.cemconcomp.2011.03.013.
  • S. Song, D. Sohn, H.M. Jennings, and T.O. Mason, Hydration of alkali-activated ground granulated blast furnace slag, J. Mater. Sci. 35 (2000), pp. 249–257. doi:10.1023/A:1004742027117.
  • A. Fernández-Jiménez and F. Puertas, Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements, Adv. Cem. Res. 15 (2003), pp. 129–136. doi:10.1680/adcr.2003.15.3.129.
  • A.M. Rashad, Y. Bai, P.A.M. Basheer, N.B. Milestone, and N.C. Collier, Hydration and properties of sodium sulfate activated slag, Cem. Concr. Compos. 37 (2013), pp. 20–29. doi:10.1016/j.cemconcomp.2012.12.010.
  • C. Shi and J.A. Stegemann, Acid corrosion resistance of different cementing materials, Cem. Concr. Res. 30 (2000), pp. 803–808. doi:10.1016/S0008-8846(00)00234-9.
  • M. Komljenović, Z. Baščarević, N. Marjanović, and V. Nikolić, External sulfate attack on alkali-activated slag, Constr. Build. Mater. 49 (2013), pp. 31–39. doi:10.1016/j.conbuildmat.2013.08.013.
  • J.J. Gaitero, I. Campillo, and A. Guerrero, Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles, Cem. Concr. Res. 38 (2008), pp. 1112–1118. doi:10.1016/j.cemconres.2008.03.021.
  • M. Fall and M. Benzaazoua, Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization, Cem. Concr. Res. 35 (2005), pp. 301–314. doi:10.1016/j.cemconres.2004.05.020.
  • J.J. Chen, J.J. Thomas, and H.M. Jennings, Decalcification shrinkage of cement paste, Cem. Concr. Res. 36 (2006), pp. 801–809. doi:10.1016/j.cemconres.2005.11.003.
  • M.M. Komljenović, Z. Baščarević, N. Marjanović, and V. Nikolić, Decalcification resistance of alkali-activated slag, J. Hazard. Mater. 233–234 (2012), pp. 112–121. doi:10.1016/j.jhazmat.2012.06.063.
  • J.J. Chang, W. Yeih, and C.C. Hung, Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes, Cem. Concr. Compos. 27 (2005), pp. 85–91. doi:10.1016/j.cemconcomp.2003.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.