205
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Optimisation of pre-blending process for raw materials in quarrying

ORCID Icon
Pages 519-530 | Received 08 May 2019, Accepted 29 Nov 2019, Published online: 06 Dec 2019

References

  • A. Bascetin, D. Adiguzel, and S. Tuylu, The investigation of CO-2 emissions for different rock units in the production of aggregate, Environ. Earth Sci. 76 (2017), pp. 279. doi:10.1007/s12665-017-6602-0.
  • D. Joshi, S. Chatterjee, and S. Equeenuddin Md., Limestone quarry production planning for consistent supply of raw materials to cement plant: A case study from indian cement industry with a captive quarry, J. Min. Sci. 51 (5) (2015), pp. 980–992. doi:10.1134/S1062739115050174.
  • E. Wilson and R. Willis, Microcomputers and linear programming feedstock revisited, Eur. J. Oper. Res. 19 (297) (1985). doi:10.1016/0377-2217(85)90125-0
  • A. Bascetin, D. Adiguzel, S. Tuylu, and S.A. Baray, Study of the optimal aggregate blending model for quarries, Environ. Earth Sci. 75 (2016), pp. 1304. doi:10.1007/s12665-016-6126-z.
  • S.M. Easa, M. Asce, E.K. Can, and A.M. Asce, Stochastic priority model for aggregate blending, J. Constr. Eng. Manag. 3 (4) (1985), pp. 358–373. doi:10.1061/(ASCE)0733-9364(1985)111:4(358).
  • H.C.D. Kock and M. Sinclair, Multi-mix feedstock problems on microcomputers, J. Oper. Res. Soc. 38 (7) (1987), pp. 585–590. doi:10.2307/2582395.
  • M. Kumral, Application of chance-constrained programming based on multi objective simulated annealing to solve a mineral blending problem, Eng. Optim. 35 (6) (2003), pp. 661–673. doi:10.1080/03052150310001614837.
  • Y.C. Toklu, Aggregate blending using genetic algorithms, Comput. Aided Civ. Infrastruct. Eng. 20 (2005), pp. 450–460. doi:10.1111/j.1467-8667.2005.00394.x.
  • T. Westerlund, H. Toivonen, and K.Ε. Nyman, Stochastic modeling and self-tuning control of a continuous cement raw material mixing system, 18th IEEE Conference Decision Control, Florida, USA, 1979, pp. 610–615.
  • A. Kural and C. Ozsoy, Identification and control of the raw material blending process in cement industry, Int. J. Adapt. Control Signal Process. 18 (2004), pp. 427–442. doi:10.1002/(ISSN)1099-1115.
  • L. Xianhong, Y. Haibin, and Y. Mingzhe, Modeling and optimization of cement raw materials blending process, Math. Prob. Eng. 2012 (2012), pp. 30 doi:10.1155/2012/392197.
  • A.E. Tiryaki, R. Kozan, and N.G. Adar, Mathematical modeling of a cement raw-material blending process using a neural network, Mater. Technol. 50 (2016), pp. 485–490.
  • M.W.A. Asad, Implementing a blending optimization model for short-range production planning of cement quarry operation, J. Min. Sci. 46 (5) (2010), pp. 525–535. doi:10.1007/s10913-010-0066-x.
  • D.J.M. Flower and J.G. Sanjayan, Green house gas emissions due to concrete manufacture, Int. J. LCA 12 (2007), pp. 282–288. doi:10.1065/lca2007.05.327.
  • S. Weiguo, C. Liu, L. Qiu, Z. Wensheng, W. Guiming, and L. Chaochao, Quantifying CO2 emissions from China’s cement industry, Renew. Sust. Energ. Rev. 50 (2015), pp. 1004–1012. doi:10.1016/j.rser.2015.05.031.
  • A. Hasanbeigi, L. Price, and E. Lin, Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review, Renew. Sust. Energ. Rev. 16 (2012), pp. 6220–6238. doi:10.1016/j.rser.2012.07.019.
  • J.H. Xu, T. Fleiter, Y. Fan, and W. Eichhammer, CO2 emissions reduction potential in China’s cement industry compared to IEA’s cement technology roadmap up to 2050, Appl. Energ. 130 (2014), pp. 592–602. doi:10.1016/j.apenergy.2014.03.004.
  • J. Ke, N. Zheng, D. Fridley, L. Price, and N. Zhou, Potential energy savings and CO2 emissions reduction of china’s cement industry, Energ. Policy 45 (2012), pp. 739–751. doi:10.1016/j.enpol.2012.03.036.
  • M. Schneider, M. Romer, M. Tschudin, and H. Bolio, Sustainable cement production—present and future, Cem. Concr. Res. 41 (2011), pp. 642–650. doi:10.1016/j.cemconres.2011.03.019.
  • M.B. Ali, R. Saidura, and M.S. Hossain, A review on emission analysis in cement industries, Renew. Sust. Energ. Rev. 15 (2011), pp. 2252–2261. doi:10.1016/j.rser.2011.02.014.
  • E.M.R. Fairbairn, B.B. Americano, G.C. Cordeiro, T.P. Paula, R.D.T. Filho, and M.M. Silvoso, Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits, J. Environ. Manage. 91 (2010), pp. 1864–1871. doi:10.1016/j.jenvman.2010.04.008.
  • E. Gartner, Industrially interesting approaches to “Low-CO2ʹ’ cements, Cem. Concr. Res. 34 (2004), pp. 1489–1498. doi:10.1016/j.cemconres.2004.01.021.
  • E. Worrell, N. Martin, and L. Price, Potentials for energy efficiency improvement in the US cement industry, Energy 25 (2000), pp. 1189–1214. doi:10.1016/S0360-5442(00)00042-6.
  • G.B. Dantzig, Linear Programming and Extensions, USA, Princeton University Press, 1963.
  • G. Bavdaz and J. Kocijan, Fuzzy controller for cement raw material blending, Trans. Inst. Meas. Control 29 (1) (2007), pp. 17–34. doi:10.1177/0142331207070362.
  • EN 197-1, Cement-Part 1: Compositions and Conformity Criteria for Common Cements, Brussels, Belgium; CEN, the European Committee for Standardization, 2012.
  • M.T. Shah, A. Fayez, and L. Ali, Chemical study of the raw material in gandghar range, district Haripur, NNFP, for portland cement manufacturing, J. Chem. Soc. Pak. 29 (2007), pp. 103–110.
  • A.M. Neville and J.J. Brooks, Concrete Technology, 2nd ed., Pearson Education Limited, Longman, UK, 978–0273732198, 2010.
  • EPA AP-42 Section 13.3, Explosives Detonation. EPA Contract No. 69-D0-0123, Midwest Research Institute, Kansas City, 1993.
  • V. Kecojevic and D. Komljenovic, Haul truck fuel consumption and CO2 emission under various engine load conditions. Mining Eng. December 62 (2010), pp. 44–48.
  • S. Turgut and G. Eseller, Sequence stratigraphy, tectonics and depositional history in eastern Thrace Basin, NW Turkey, Mar. Pet. Geol. 17 (2000), pp. 61–100. doi:10.1016/S0264-8172(99)00015-X.
  • R. Feiz, J. Ammenberg, L. Baas, M. Eklund, A. Helgstrand, and R. Marshall, Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry, J. Clean. Prod. 98 (2015), pp. 272–281. doi:10.1016/j.jclepro.2014.01.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.