151
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Chemical and microstructural behaviour of ferruginous rocky outcrops topsoils applied to degraded mining areas

, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 219-234 | Received 29 Jan 2019, Accepted 24 Aug 2020, Published online: 14 Sep 2020

References

  • IBRAM – Brazilian mining association, Relatório Anual de Atividades – Julho 2018 a Julho 2019, Technical Report, Brasília, 2019. Available at https://www.portaldamineracao.com.br/ibram/wp-content/uploads/2019/07/relatorio-anaul-2018-2019.pdf
  • P.T.A. Castro, H.A. Nalini, and H.M. Lima, Understanding mining around the Quadrilatero Ferrifero, Ecológico, Belo Horizonte, 2011. 93p.
  • A. Bradshaw, Restoration of mined lands — Using natural processes, Ecol Eng 8 (1997), pp. 255–269. doi:10.1016/S0925-8574(97)00022-0.
  • E.K.A. Twum and S. Nii-Annang, Impact of soil compaction on bulk density and root biomass of Quercus petraea L. at reclaimed post-lignite mining site in Lusatia, Germany, Appli Environ Soil Sci (2015), pp. 1–5. doi:10.1155/2015/504603.
  • X. Wang, Y. Liu, G. Zeng, L. Chai, X. Xiao, X. Song, and Z. Min, Pedological characteristics of Mn mine tailings and metal accumulation by native plants, Chemosphere 72 (2008), pp. 1260–1266. doi:10.1016/j.chemosphere.2008.05.001.
  • M.L.P. Ruivo, N.F. Barros, and C.E.R. Schaeffer, Relationships of soil microbial biomass with the chemical characteristics of organic and mineral soil fractions after mineral exploration in Eastern Brazilian Amazon, Bol. Mus. Para. Emilio Goeldi Cienc. Nat. 36 (2001), pp. 137–160.
  • F.C. Mengler, G.A. Kew, R.J. Gilkes, and J.M. Koch, Using instrumented bulldozers to map spatial variation in the strength of regolith for bauxite mine floor rehabilitation, Soil & Tillage Res 90 (2006), pp. 126–144. doi:10.1016/j.still.2005.08.017.
  • D.T.G. Bizuti, T.M. Soares, M.M. Duarte, J.C. Casagrande, F.J.M. Peinado, S.D.S. de Medeiros, J. van Melis, D. Schweizer, and P.H.S. Brancalion, Recovery of soil phosphorus on former bauxite mines through tropical forest restoration, Restor Ecol (2020). doi:10.1111/rec.13194.
  • S. Le Stradic, E. Buisson, and G.W. Fernandes, Restoration of neotropical grasslands degraded by quarrying using hay transfer, Appl Veg Sci 17 (2014), pp. 1–11. doi:10.1111/avsc.12074.
  • M.K. Ghose, Management of topsoil for geoenvironmental reclamation of coal mining areas, Environ Geol 40 (2001), pp. 1405–1410. doi:10.1007/s002540100321.
  • D.A. Jasper, Beneficial soil microorganisms of the Jarrah Forest and their recovery in bauxite mine restoration in Southwestern Australia, Restor Ecol 15 (2007), pp. S74–S84. doi:10.1111/j.1526-100X.2007.00295.x.
  • M. Tibbett, Large-scale mine site restoration of Australian eucalypt forests after bauxite mining: Soil management and ecosystem development, in Ecology of Industrial Pollution, L.C. Batty, ed., Cambridge University Press, Cambridge, 2010, pp. 309–326. doi:10.1017/CBO9780511805561.016.
  • Y. Liu, S. Lei, and C. Gong, Comparison of plant and microbial communities between an artificial restoration and a natural restoration topsoil in coal mining subsidence area, Environ Earth Sci 78 (2019), pp. 204. doi:10.1007/s12665-019-8195-2.
  • S.K. Maiti and J. Ahirwal, Ecological restoration of coal mine degraded lands: Topsoil management, pedogenesis, carbon sequestration, and mine pit limnology, in Phytomanagement of Polluted Sites. Market Opportunities in Sustainable Phytoremediation, V.C. Pandey and K. Bauddh, eds., Elsevier, Amsterdam, 2019, pp. 83–111. doi:10.1016/b978-0-12-813912-7.00003-x.
  • A. Bradshaw, The use of natural processes in reclamation—advantages and difficulties, Landsc Urban Plan 51 (2000), pp. 89–100. doi:10.1016/S0169-2046(00)00099-2.
  • C. Birnbaum, L.E. Bradshaw, K.X. Ruthrof, and J.B. Fontaine, Topsoil stockpiling in restoration: Impact of storage time on plant growth and symbiotic soil biota, Ecol Restor 35 (3) (2017), pp. 237–245. doi:10.3368/er.35.3.237.
  • N.K. Kundu and M.K. Ghose, Shelf life of stock-piled topsoil of an opencast coal mine, Environ Conserv Cambridge. 24 (1997), pp. 24–30. doi:10.1017/S0376892997000064
  • R.P. Moraes, W.A.C. Carvalho, J.A.A. Pereira, G.O. Nascimento, and D.A. Barros, Effect of topsoil stockpiling on the viability of seed bank in field phytophysiognomies Campos de Altitude, CERNE 23 (3) (2017), pp. 339–347. doi:10.1590/01047760201723032340.
  • C.M. Jacobi, F.F. Carmo, R.C. Vincent, and J.R. Stehmann, Plant communities on ironstone outcrops: A diverse and endangered Brazilian ecosystem, Biodivers. Conserv. 16 (2007), pp. 2185–2200. doi:10.1007/s10531-007-9156-8.
  • N.A. de Machado, M.G.P. Leite, M.A. Figueiredo, and A.R. Kozovits, Growing Eremanthus erythropappus in crushed laterite: A promising alternative to topsoil for bauxite-mine revegetation, J. Environ. Manage. 129 (2013), pp. 149–156. doi:10.1016/j.jenvman.2013.07.006.
  • M.A. Figueiredo, M.G.P. Leite, and A.R. Kozovits, Influence of soil texture on nutrients and potentially hazardous elements in Eremanthus erythropappus, Int J Phytoremediation 18 (5) (2016), pp. 487–493. doi:10.1080/15226514.2015.1115961.
  • M.A. Figueiredo, Efeito de diferentes granulometrias de substrato laterítico nas relações geoquímicas, hídricas e no crescimento de Eremanthus erythropappus em uma área degradada pela mineração. Msc. Diss., Universidade Federal de Ouro Preto, 2014.
  • A.T. Schettini, M.G.P. Leite, M.C.T.B. Messias, A. Gauthier, H. Li, and A.R. Kozovits, Exploring Al, Mn and Fe Phytoextraction in 27 Ferruginous Rocky Outcrops Plant Species, Flora, 238 (2018), pp. 175–182. doi:10.1016/j.flora.2017.05.004.
  • G.W. Fernandes, Ecology and Conservation of Mountaintop Grasslands in Brazil, Springer International Publishing, Switzerland, 2016. 567p. doi:10.1007/978-3-319-29808-5.
  • M.C.T.B. Messias, M.G.P. Leite, J.A.A. Meira Neto, A.R. Kozovits, and R. Tavares, Soil-vegetation relationship in quartzitic and ferruginous Brazilian rocky outcrops, Folia Geobotanica 48 (2013), pp. 509–521. doi:10.1007/s12224-013-9154-4.
  • E.A.R. Valim, H.A. Nalini, and A.R. Kozovits, Litterfall dynamics in an iron-rich rock outcrop complex in the southeastern portion of the iron Quadrangle of Brazil, Acta Botanica Brasilica 27 (2) (2013), pp. 286–293. doi:10.1590/S0102-33062013000200005.
  • C.A. Alvares, J.L. Stape, P.C. Sentelhas, L. De, M. Gonçalves, and G. Sparovek, Köppen’s climate classification map for Brazil, Meteorol. Zeitschrif 22 (2013), pp. 711–728. doi:10.1127/0941-2948/2013/0507
  • VALE – Companhia Vale do Rio Doce, Estudo de Impacto Ambiental – Ampliação da Mina de Fazendão, Catas Altas-MG, Tech. Rep., Total Meio Ambiente, Belo Horizonte-MG, 2014.
  • EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural Research Corporation), Sistema brasileiro de classificação de solos, EMBRAPA, Rio de Janeiro, 1999.
  • B.V. Defelipo and A.C. Ribeiro, Análise química do solo (metodologia), Technical Report, Universidade Federal de Viçosa, MG, 1981.
  • H.F. Filizola and M.A. Gomes, Coleta e Impregnação de Solos para Análise Micromorfológica, Technical Report, EMBRAPA, Jaguariúma, 2004.
  • G. Stoops, Guidelines for Analysis and Description of Soil and Regolith Thin Sections, Soil Science Society of America Inc, Madison, USA, 2003.
  • G. Stoops, V. Marcelino, and F. Mees, Interpretation of Micromorphological Features of Soils and Regoliths, 1 ed., Elsevier, Amsterdam, 2010. 752p.
  • D. Mueller-Dombois and H. Ellenberg, Aims and Methods of Vegetation Ecology, John Wiley & Sons, New York, USA, 1974.
  • G.K. Donagemma, H.A. Ruiz, M.P.F. Fontes, J.C. Ker, and C.E.G.R. Schaefer, Latosols dispersion in response to pre-treatments used in particle-size analysis., Revista Brasileira De Ciência Do Solo 27 (2003), pp. 765–772. doi:10.1590/S0100-06832003000400021.
  • C. Raunkiaer, The life forms of plants and statistical plant geography, being the collected papers of C. Raunkiaer 1934.
  • D.F. Gaff, Desiccation tolerant plants in South America, Oecologia, Alemanha 74 (1987), pp. 133–136. doi:10.1007/BF00377357.
  • R.C. Vincent and M. Meguro, Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil, Brazilian J Bot 31 (2008), pp. 288–377. doi:10.1590/S0100-84042008000300002.
  • J.M. Koch, S.C. Ward, C.D. Grant, and G.L. Ainsworth, Effects of bauxite mine restoration operations on topsoil seed reserves in the jarrah forest of Western Australia, Restor Ecol 4 (1996), pp. 368–376. doi:10.1111/j.1526-100X.1996.tb00189.x.
  • M.A. Norman, J.M. Koch, C.D. Grant, T.K. Morald, and S.C. Ward, Vegetation succession after bauxite mining in Western Australia, Restor Ecol 14 (2006), pp. 278–288. doi:10.1111/j.1526-100X.2006.00130.x.
  • P.J. Golos and K.W. Dixon, Waterproofing topsoil stockpiles minimizes viability decline in the soil seed bank in an arid environment, Restor Ecol 22 (2014), pp. 495–501. doi:10.1111/rec.12090.
  • A. Beauvais and Y. Tardy, Formation et dégradation des cuirasses ferrugineuses sous climat tropical humide, à la lisière de la forêt équatoriale, Académie Des Sciences, Paris, T 313 Série II (1991), pp. 1539–1545.
  • D.B. Nahon, Introduction to the Petrology of Soils and Chemical Weathering, John Wiley & Sons Inc, New York, USA, 1991.
  • A. Beauvais, Ferricrete biochemical degradation on the rainforest savannas boundary of Central African Republic, Geoderma 150 (2009), pp. 379–388. doi:10.1016/j.geoderma.2009.02.023.
  • F.S. Oliveira, A.F.D.C. Varajao, C.A.C. Varajao, C.E.G.R. Schaefer, and B. Boulangé, The Role of Biological Agents in the Microstructural and Mineralogical Transformations in Aluminium Lateritic Deposit in Central Brazil, Geoderma, Amsterdam, 2014, pp. 250–259.
  • A.C.C. Mateus, F.S. Oliveira, A.F.D.C. Varajao, and C.C.V. Soares, Genesis of soils from bauxite in southeastern Brazil: Resilification as a soil-forming process, Revista Brasileira De Ciência Do Solo 41 (2017), pp. 1–18. doi:10.1590/18069657rbcs20160507.
  • J. Katzur and M. Haubold-Rosar, Amelioration and reforestation of sulfurous mine soils in Lusatia (Eastern Germany), Water Air Soil Pollut 91 (1996), pp. 17–32. doi:10.1007/BF00280920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.