251
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Modelling blast movement and muckpile formation with the position-based dynamics method

&
Pages 306-317 | Received 26 Dec 2019, Accepted 09 Oct 2020, Published online: 27 Oct 2020

References

  • S. Bhandari, On the role of stress waves and quasi-static gas pressure in rock fragmentation by blasting, Acta Astron. 6 (3–4) (1977), pp. 365–383. doi:10.1016/0094-5765(79)90104-8.
  • H.K. Kuter and C. Fairhust, On the fracture process in blasting, Int. J. Rock Mech. Min. Sci. 3 (1983), pp. 181–188.
  • D.L. Rosa and D.M. Thornton, Blast movement modelling and measurement, 35th APCOM Symposium, Wollongong, NSW, 24-30 September 2011, pp. 279–308.
  • Z.M. Zhu, Numerical prediction of crater blasting and bench blasting, Int. J. Rock Mech. Min. Sci. 46 (6) (2009), pp. 1088–1096. doi:10.1016/j.ijrmms.2009.05.009.
  • S.P. Singh and R. Narendrula, Factors affecting the productivity of loaders in surface mines, Int. J. Min. Reclam. Env. 20 (1) (2006), pp. 20–32. doi:10.1080/13895260500261574.
  • P. Segarra, J.A. Sanchidrián, L.M. López, and E. Querol, On the prediction of mucking rates in metal ore blasting, J. Min. Sci. 46 (2) (2010), pp. 167–176. doi:10.1007/s10913-010-0022-9.
  • D. Thornton, The implications of blast-induced movement to grade control, 7th International mining geology conference, Perth, WA, 17-19 August 2009, pp. 1–8.
  • Y.J. Ning, J. Yang, G.W. Ma, and P.W. Chen, Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis, Rock Mech. Rock Eng. 44 (4) (2011), pp. 483–490. doi:10.1007/s00603-010-0132-3.
  • L.M. Taylor and D.S. Preece, Simulation of blasting induced rock motion using spherical element models, Eng. Computation 9 (1992), pp. 243–252.
  • D.S. Preece, S.L. Burchell, and D.S. Scovira, Coupled explosive gas flow and rock motion modelling with comparison to bench blast field data, Proceeding of the 4th International Symposium on Rock Fragmentation by Blasting, Vienna, Austria, 5-8 July 1993, pp. 239–245.
  • D.S. Preece, J.P. Tidman, and S.H. Chung, Expand rock blasting modeling capabilities of DMC_BLAST, including buffer blasting, In the proceedings of the 13th Annual Symposium on Explosives and Blasting Research of the International Society of Explosives Engineers, Las Vegas, NV, 2-5 February 1997.
  • A. Munjiza, J.P. Latham, and K.R.F. Andrews, Detonation gas model for combined finite-discrete element simulation of fracture and fragmentation, Int. J. Numer. Meth. Eng. 49 (12) (2000), pp. 1495–1520. doi:10.1002/1097-0207(20001230)49:12<1495::AID-NME7>3.0.CO;2-5.
  • I.R. Firth and D.L. Taylor, Bench blast modeling using numerical simulation and mine planning software, SME Annual Meeting, Denver, Colorado, February 2001, pp. 1–4.
  • G.K. Jorgenson and S.H. Chung, Blast simulation surface and underground with the SABREX model, CIM Bull. 80 (1987), pp. 37–40.
  • R.L. Yang, A. Kavetsky, and C.K. Mckenzie, A two-dimensional kinematic model for predicting muckpile shape in bench blasting, Int. J. Mining. Geologi. 7 (3) (1989), pp. 209–226. doi:10.1007/BF00880943.
  • R.L. Yang and A. Kavetsky, A three dimensional model of muckpile formation and grade boundary movement in open pit blasting, Int. J. Mining. Geologi. 8 (1990), pp. 13–34.
  • A.E. Cocker and A. Tordoir., 2D Move Blast Displacement Model Preliminary User’s Manual, University of Queensland, Brisbane, Australia, 2009.
  • W. Rogers, Understanding blast movement to optimize grade control practices at the Ahafo Gold Mine in Ghana, MPhil Thesis, The University of Queensland, 2014.
  • A. Tordoir, D. Weatherley, I. Onederra, et al., A new 3D simulation framework to model blast induced rock mass displacement using physics engines, Proceedings 9th International Symposium on Rock Fragmentation by Blasting, 2009, pp. 381–388.
  • R. Picorelli, A. Musunuri, M. Jones, and S.S. Kanchibotla, An engineering model to estimate blast movement and resulting ore loss and dilution, 12th International Symposium on Rock Fragmentation by Blasting, Luleå Sweden, 11-13 June 2018, pp. 619–630.
  • J. Bender, M. Müller, M.A. Otaduy, M. Teschner, and M. Macklin, A survey on position-based simulation methods in computer graphics, Comput. Graph. Forum. 33 (6) (2014), pp. 228–251. doi:10.1111/cgf.12346.
  • T. Jakobsen, Advanced character physics, Proceedings of game developers conference, San Jose, USA, 24 March 2001, pp. 383–401.
  • M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, Position based dynamics, J. Vis. Commun. Image. R. 18 (2) (2007), pp. 109–118. doi:10.1016/j.jvcir.2007.01.005.
  • C. Deul, P. Charrier, and J. Bender, Position-based rigid-body dynamics, Comput. Animat. Virt. W. 27 (2) (2016), pp. 103–112. doi:10.1002/cav.1614.
  • M. Frâncu and F. Moldoveanu, Position based simulation of solids with accurate contact handling, Comput. Graph. 69 (2017), pp. 12–23.
  • Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi Tessellations: Applications and algorithms, Siam. Rev. 41 (4) (1999), pp. 636–675. doi:10.1137/S0036144599352836.
  • A.M. Starfield and J.M. Pugliese, Compression waves generated in rock by cylindrical explosive charges: A comparison between a computer model and field measurements, Int. J. Rock Mech. Min. Sci. 5 (1) (1968), pp. 65–77. doi:10.1016/0148-9062(68)90023-5.
  • D.M. Thornton, The application of electronic monitors to understand blast movement dynamics and improve blast designs, Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting, Granada, Spain, 13–17 August 2009.
  • N. Petropoulos, M. Wimmer, D. Johansson, and E. Nordlund, Compaction of confining materials in pillar blast tests, Rock Mech. Rock Eng. 51 (6) (2018), pp. 1907–1919. doi:10.1007/s00603-018-1447-8.
  • Y.P. Zhang and Y.L. Yu, Study on the models for rock throw and stack during bench blasting of open-pits, Met. Mine 9 (1995), pp. 19–22.
  • X.H. Gao and Z.H. Huang, The preliminary research of determining a reasonable short-delay interval by the high speed photography, Min. Metall. Eng. 6 (1986), pp. 13–17 (in Chinese).
  • F. Ouchterlony, U. Nyberg, M. Olsson, et al., Where does the explosive energy in rock blasting rounds go? Sci. Tech. Energ. Mater. 65 (2004), pp. 54–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.