354
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Rheological and mechanical properties of fibre-reinforced cemented paste and foam backfill

, , ORCID Icon &
Pages 488-505 | Received 02 Aug 2020, Accepted 26 Jan 2021, Published online: 14 Feb 2021

References

  • M. Sheshpari, A review of underground mine backfilling methods with emphasis on cemented paste backfill, Elec. J. Geotech. Eng. 20 (2015), pp. 5183–5208.
  • Y. Potvin, E. Thomas, and A. Fourie, Handbook on Mine Fill, Australian Centre for Geomechanics, Crawley, WA, Australia, 2005.
  • X. Chen, X.Z. Shi, J. Zhou, Q. Chen, E.M. Li, and X.H. Du, Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill, Construct. Build. Mater. 190 (2018), pp. 211–221. doi:10.1016/j.conbuildmat.2018.09.092.
  • Z. Martic, J.E. Gelson, J. Champa, and B. Knight, Admixtures in Backfill Applications for Cost and Performance Benefits, Paste 2011, Brisbane, Australian, 2011.
  • G. Xue, E. Yilmaz, W. Song, and E. Yilmaz, Influence of fiber reinforcement on mechanical behavior and microstructural properties of cemented tailings backfill, Construct. Build. Mater. 213 (2019), pp. 275–285. doi:10.1016/j.conbuildmat.2019.04.080.
  • X.W. Yi, G.W. Ma, and A. Fourie, Compressive behaviour of fibre-reinforced cemented paste backfill, Geotextiles Geomembranes 43 (3) (2015), pp. 207–215. doi:10.1016/j.geotexmem.2015.03.003.
  • M. Fall, M. Benzaazoua, and S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Minerals Eng. 18 (1) (2005), pp. 41–44. doi:10.1016/j.mineng.2004.05.012.
  • A. Kesimal, E. Yilmaz, and B. Ercikdi, Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents, Cement Concrete Res. 34 (10) (2004), pp. 1817–1822. doi:10.1016/j.cemconres.2004.01.018.
  • A. Kesimal, E. Yilmaz, B. Ercikdi, I. Alp, and H. Deveci, Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill, Mater. Letters 59 (28) (2005), pp. 3703–3709. doi:10.1016/j.matlet.2005.06.042.
  • B. Ercikdi, T. Yilmaz, and G. Kulekci, Strength and ultrasonic properties of cemented paste backfill, Ultrasonics 54 (1) (2014), pp. 195–204. doi:10.1016/j.ultras.2013.04.013.
  • B. Ercikdi, A. Kesimal, F. Cihangir, H. Deveci, and İ. Alp, Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage, Cement Concrete Composit. 31 (4) (2009), pp. 268–274. doi:10.1016/j.cemconcomp.2009.01.008.
  • E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Construct. Build. Mater. 75 (2015), pp. 99–111. doi:10.1016/j.conbuildmat.2014.11.008.
  • R.J. Mitchell and D.M. Stone, Stability of reinforced cemented backfills, Can. Geotech. J. 24 (2) (1987), pp. 189–197. doi:10.1139/t87-024.
  • M. Kermani, F.P. Hassani, E. Aflaki, M. Benzaazoua, and M. Nokken, Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill − Part 1, J. Rock Mech. Geotech. Eng. 7 (3) (2015), pp. 266–272. doi:10.1016/j.jrmge.2015.03.006.
  • B. Koohestani, T. Belem, A. Koubaa, and B. Bussiere, Experimental investigation into the compressive strength development of cemented paste backfill containing Nano-silica, Cement Concrete Composit. 72 (2016), pp. 180–189. doi:10.1016/j.cemconcomp.2016.06.016.
  • M.B.C. Mangane, R. Argane, R. Trauchessec, A. Lecomte, and M. Benzaazoua, Influence of superplasticizers on mechanical properties and workability of cemented paste backfill, Minerals Eng. 116 (2018), pp. 3–14. doi:10.1016/j.mineng.2017.11.006.
  • H. Li, A. Wu, and H. Wang, Evaluation of short-term strength development of cemented backfill with varying sulphide contents and the use of additives, J. Environ. Manage. 239 (2019), pp. 279–286. doi:10.1016/j.jenvman.2019.03.057.
  • F. Hassani, M. Hefni, M.F. Kermani, and D. Vatne, Methods and Systems for Foam Mine Fill, U. S. P. Application ed., McGill University, U.S., 2016.
  • E.K. Kunhanandan Nambiar and K. Ramamurthy, Fresh state characteristics of foam concrete, J. Mater. Civil Eng. 20 (2) (2008), pp. 111–117. doi:10.1061/(ASCE)0899-1561(2008)20:2(111).
  • K. Ramamurthy, E.K. Kunhanandan Nambiar, and G.I.S. Ranjani, A classification of studies on properties of foam concrete, Cement Concrete Composit. 31 (6) (2009), pp. 388–396. doi:10.1016/j.cemconcomp.2009.04.006.
  • Y.H.M. Amran, N. Farzadnia, and A.A.A. Ali, Properties and applications of foamed concrete; a review, Construct. Build. Mater. 101 (2015), pp. 990–1005. doi:10.1016/j.conbuildmat.2015.10.112.
  • A. Hamad, Materials, production, properties and application of aerated lightweight concrete, Int. J. Mater. Sci. Eng. 2 (2014), pp. 152–157.
  • S.M.J. Mortazavi, S. Zolghadri, and A. Hajipour, Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors, Internation, J. Radiation Res. 5 (2007), pp. 143–146.
  • G. Mailar, N. Sujay Raghavendra, P. Hiremath, B.M. Sreedhara, and D.S. Manu, Sustainable utilization of discarded foundry sand and crushed brick masonry aggregate in the production of lightweight concrete, Eng. Struct. Technol. 9 (2017), pp. 52–61. doi:10.3846/2029882X.2017.1279987.
  • M. Hefni and F. Hassani, Experimental Development of a Novel Mine Backfill Material: Foam Mine Fill, Minerals 10 (6) (2020), pp. 564. doi:10.3390/min10060564.
  • M. Hefni, F.P. Hassani, and M.F. Kermani. A Review of the Properties of Foam Mine Fill, International Society for Rock Mechanics, Montreal, Canada, 2015 May.
  • V. Kaushal and S.P. Guleria, Study of Tensile Strength and Mineralogical Behavior of Flyash–Lime-Gypsum Composite Reinforced with Jute Fibres, IWLCE, Himachal Pradesh, 2016.
  • M. Mostafa and N. Uddin, Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces, Case Studies Construct. Mater. 5 (2016), pp. 53–63. doi:10.1016/j.cscm.2016.07.001.
  • S. Najjar, S. Sadek, and H. Taha, Use of Hemp Fibers in Sustainable Compacted Clay Systems, Geo-Congress, Atlanta, Georgia, 2014.
  • B. Koohestani, A. Koubaa, T. Belem, B. Bussiere, and H. Bouzahzah, Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler, Construct. Build. Mater. 121 (2016), pp. 222–228. doi:10.1016/j.conbuildmat.2016.05.118.
  • G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Analysis of internal structure behavior of fiber reinforced cement-tailings matrix composites through X-ray computed tomography, Composites Part B: Eng. 175 (2019), pp. 107091. doi:10.1016/j.compositesb.2019.107091.
  • G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Mechanical, flexural and microstructural properties of cement-tailings matrix composites: Effects of fiber type and dosage, Composites Part B-Eng. 172 (2019), pp. 131–142. doi:10.1016/j.compositesb.2019.05.039.
  • G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes, Construct. Build. Mater. 241 (2020), pp. 118113. doi:10.1016/j.conbuildmat.2020.118113.
  • S. Cao, E. Yilmaz, and W. Song, Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill, Construct. Build. Mater. 223 (2019), pp. 44–54. doi:10.1016/j.conbuildmat.2019.06.221.
  • N.C. Consoli, H.P. Nierwinski, A.P. da Silva, and J. Sosnoski, Durability and strength of fiber-reinforced compacted gold tailings cement blends, Geotex. Geomembranes 45 (2) (2017), pp. 98–102. doi:10.1016/j.geotexmem.2017.01.001.
  • L. Festugato, N.C. Consoli, and A. Fourie, Cyclic shear behaviour of fibre-reinforced mine tailings, Geosynth. Int. 22 (2) (2015), pp. 196–206. doi:10.1680/gein.15.00005.
  • Ö. Sultan, The effect of fibre content on the mechanical properties of hemp and basalt fibre reinforced phenol formaldehyde composites, J. Mater. Sci. 40 (17) (2005), pp. 4585–4592. doi:10.1007/s10853-005-1103-z.
  • C. Colombo, L. Vergani, and M. Burman, Static and fatigue characterisation of new basalt fibre reinforced composites, Composite Struct. 94 (3) (2012), pp. 1165–1174. doi:10.1016/j.compstruct.2011.10.007.
  • C. Jiang, K. Fan, F. Wu, and D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete, Mater. Design 58 (2014), pp. 187–193. doi:10.1016/j.matdes.2014.01.056.
  • V. Lopresto, C. Leone, and I. De Iorio, Mechanical characterisation of basalt fibre reinforced plastic, Composit. Part B: Eng. 42 (4) (2011), pp. 717–723. doi:10.1016/j.compositesb.2011.01.030.
  • T. Deák and T. Czigány, Chemical composition and mechanical properties of basalt and glass fibers: a comparison, Tex. Res. J. 79 (7) (2009), pp. 645–651. doi:10.1177/0040517508095597.
  • M.E. Alves Fidelis, T.V.C. Pereira, O.D.F.M. Gomes, F. de Andrade Silva, and R.D.T. Filho, The effect of fiber morphology on the tensile strength of natural fibers, J. Mater. Res. Technol. 2 (2) (2013), pp. 149–157. doi:10.1016/j.jmrt.2013.02.003.
  • H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, A review on the tensile properties of natural fiber reinforced polymer composites, Composit. Part B Eng. 42 (4) (2011), pp. 856–873. doi:10.1016/j.compositesb.2011.01.010.
  • M. Ramesh, K. Palanikumar, and K.H. Reddy, Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites, Composite. Part B Eng. 48 (2013), pp. 1–9. doi:10.1016/j.compositesb.2012.12.004.
  • A.V. Ratna Prasad and K. Mohana Rao, Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo, Mater. Design 32 (8–9) (2011), pp. 4658–4663. doi:10.1016/j.matdes.2011.03.015.
  • R.D. Tolêdo Filho, K. Scrivener, G.L. England, and K. Ghavami, Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites, Cement Concrete Composit. 22 (2) (2000), pp. 127–143. doi:10.1016/S0958-9465(99)00039-6.
  • T. Zimmermann, N. Bordeanu, and E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydrate Polymers 79 (4) (2010), pp. 1086–1093. doi:10.1016/j.carbpol.2009.10.045.
  • J.K. Pandey, A.P. Kumar, M. Misra, A.K. Mohanty, L.T. Drzal, and R. Palsingh, Recent advances in biodegradable nanocomposites, J. Nanosci. Nanotechnol. 5 (4) (2005), pp. 497–526. doi:10.1166/jnn.2005.111.
  • W.K. Wan, J.L. Hutter, L. Milton, and G. Guhados, Bacterial Cellulose and Its Nanocomposites for Biomedical Applications. O. Kristiina and S. Mohini eds., ACS Publications, Ontario, Canada, 2006, pp. 222–241.
  • H. Yano, J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, and K. Handa, Optically transparent composites reinforced with networks of bacterial nanofibers, Adv. Mater. 17 (2) (2005), pp. 153–155. doi:10.1002/adma.200400597.
  • M.A. Hubbe, O.J. Rojas, L.A. Lucia, and M. Sain, Cellulosic nanocomposites: A review, BioResources 3 (2008), pp. 929–980.
  • ASTM International. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014.
  • CSA. Cementitious Materials Compendium (Consists of A3001, A3002, A3003, A3004 and A3005), in CAN/CSA-A3000-13, CSA Group, Canada, 2018.
  • ASTM International. Standard Test Methods for Laboratory Miniature Vane Shear Test for SaturatedFine-Grained Clayey Soil, ASTM International, West Conshohocken, PA, 2016.
  • N.Q. Dzuy and D.V. Boger, Direct yield stress measurement with the vane method, J. Rheol. 29 (3) (1985), pp. 335–347. doi:10.1122/1.549794.
  • Q.D. Nguyen and D.V. Boger, Measuring the flow properties of yield stress fluids, Ann. Rev. Fluid Mech. 24 (1) (1992), pp. 47–88. doi:10.1146/annurev.fl.24.010192.000403.
  • N.Q. Dzuy and D.V. Boger, Yield stress measurement for concentrated suspensions, J. Rheol. 27 (4) (1983), pp. 321–349. doi:10.1122/1.549709.
  • S. Clayton, T.G. Grice, and D.V. Boger, Analysis of the slump test for on-site yield stress measurement of mineral suspensions, Int. J. Min. Process. 70 (1–4) (2003), pp. 3–21. doi:10.1016/S0301-7516(02)00148-5.
  • J. Murata, Flow and deformation of fresh concrete, Mater. Struct. 17 (1984), pp. 117–129.
  • N. Gharib, B. Bharathan, L. Amiri, M. McGuinness, F.P. Hassani, and A.P. Sasmito, Flow characteristics and wear prediction of Herschel-Bulkley non-Newtonian paste backfill in pipe elbows, Can. J. Chem. Eng. 95 (2017), pp. 1181–1191.
  • S.E. Chidiac, F. Habibbeigi, and D. Chan, Slump and slump flow for characterizing yield stress of fresh concrete, Aci Mater. J. 103(6) (2006), pp. 413–418.
  • ASTM International. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2018.
  • S. Panchal, D. Deb, and T. Sreenivas, Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages, Adv. Powder Technol. 29 (9) (2018), pp. 2211–2220. doi:10.1016/j.apt.2018.06.005.
  • X. Deng, B. Klein, L. Tong, and B. de Wit, Experimental study on the rheological behavior of ultra-fine cemented backfill, Construct. Build. Mater. 158 (2018), pp. 985–994. doi:10.1016/j.conbuildmat.2017.05.085.
  • S.B. Johnson, G.V. Franks, P.J. Scales, D.V. Boger, and T.W. Healy, Surface chemistry–rheology relationships in concentrated mineral suspensions, Int. J. Min. Process. 58 (1–4) (2000), pp. 267–304. doi:10.1016/S0301-7516(99)00041-1.
  • Z. Wang, Studies on mechanical performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composites. Ph.D., Tsinghua University, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.