247
Views
4
CrossRef citations to date
0
Altmetric
Research Article

On the dependence of predictive models on experimental dataset: a spontaneous combustion studies scenario

, , ORCID Icon, , , & show all
Pages 506-522 | Received 26 Jun 2020, Accepted 18 Nov 2020, Published online: 14 Feb 2021

References

  • M. Onifade and B. Genc, A review of spontaneous combustion studies–South African context, Int. J. Min. Reclam. Environ. 33 (8) (2019a), pp. 527–547. doi:10.1080/17480930.2018.1466402.
  • K.O. Said, M. Onifade, A.I. Lawal, and J.G. Muchiri, Computational intelligence-based models for predicting the spontaneous combustion liability of coal, Int. J. Coal Prep. (2020a). doi:10.1080/19392699.2020.1741558.
  • M. Onifade, B. Genc, and B. Samson, Spontaneous combustion liability between coal seams: A thermogravimetric study, Int. J. Min. Sci. Technol. (2020). doi:10.1016/j.ijmst.2020.03.006.
  • A.H. Ozdeniz, Y. Ozbay, N. Yilmaz, and C. Sensogut, Monitoring and ANN modelling of coal stockpile behaviour under different atmospheric conditions, Energy Sources Part A 30 (6) (2008), pp. 494–507. doi:10.1080/15567030600829055.
  • D.S. Nimaje and D.P. Tripathy, Assessment of fire risk of indian coals using artificial neural network techniques, American Journal of Mining and Metallurgy 3 (2) (2015), pp. 43–53. doi:10.12691/ajmm-3-2-2.
  • N. Mohalik, D. Panigrahi, V. Singh, and R. Singh, Assessment of spontaneous heating of coal by differential scanning calorimetric technique-an overview, Coal Oper. Conf. (2009), pp. 303–310 available at https://ro.uow.edu.au/coal/113/.
  • B.B. Beamish and D.G. Blazak, Relationship between ash content and R70 self-heating rate of Callide Coal, International Journal of Coal Geology 64 (1–2) (2005), pp. 126–132. doi:10.1016/j.coal.2005.03.010.
  • A.R. Gbadamosi, M. Onifade, B. Genc, and S. Rupprecht, Analysis of spontaneous combustion liability indices and coal recording standards/basis, Int. J. Min. Sci. Technol. (2020). doi:10.1016/j.ijmst.
  • D.S. Nimaje and D.P. Tripathy, Characterization of some Indian coals to assess their liability to spontaneous combustion, Fuel 163 (2016), pp. 139–147. doi:10.1016/j.fuel.2015.09.041.
  • D.S. Pattanaik, P. Behera, and B. Singh, Spontaneous combustibility characterisation of the chirimiri coals, Koriya district, Chhatisgarh, India, Int. J. Geosci. 02 (03) (2011), pp. 336–347. doi:10.4236/ijg.2011.23036.
  • E. Kaymakçi and V. Didari, Relations between coal properties and spontaneous combustion parameters, Turkish J. Eng. Environ. Sci. 26 (1) (2002), pp. 59–64. doi:10.1016/s0140-6701(03)90480-2.
  • F. Akgün and A. Arisoy, Effect of particle size on the spontaneous heating of a coal stockpile, Combust. Flame 99 (no. 1) (1994), pp. 137–146. doi:10.1016/0010-2180(94)90085-X.
  • K.O. Said, M. Onifade, A.I. Lawal, and J.G. Muchiri, An artificial intelligence-based model for the prediction of spontaneous combustion liability of coal based on its proximate analysis, Combusion Sci. Technol. (2020b). doi:10.1080/00102202.2020.1736577.
  • H.B. Sahu, S.S. Mahapatra, and D.C. Panigrahi, An empirical approach for classification of coal seams with respect to the spontaneous heating susceptibility of Indian coals, Int. J. Coal Geol. 80 (3–4) (2009), pp. 175–180. doi:10.1016/j.coal.10.001.
  • A. Kucuk, Y. Kadioglu, and M. Gulaboglu, A study of spontaneous combustion characteristics of a Turkish lignite: Particle size, moisture of coal, humidity of air, Combust. Flame 133 (3) (2003), pp. 255–261. doi:10.1016/S0010-2180(02)00553-9.
  • H.B. Sahu and S.S. Mahapatra, Forecasting spontaneous heating susceptibility of Indian coals using neuro fuzzy system, Geotech. Geol. Eng. 31 (2) (2013), pp. 683–697. doi:10.1007/s10706-013-9618-6.
  • A. Arisoy, B. Beamish, and E. Cetegen, Modelling spontaneous combustion of coal, Turk. J. Eng. Environ. Sci. 30 (2006), pp. 193–201.
  • Z. Zahariev, C. Christov, C. Krougliy, and D. Batchvarov, Installation for evaluation of spontaneous combustion tendency of solid fuels and materials in the adiabatic conditions. In: Proceedings 7th international mine ventilation congress, Krakow, Poland, (2001), pp. 505–507.
  • D.H. Roy and T.N. Singh, Predicting deformational properties of Indian coal: Soft computing and regression analysis approach, Measurement (2019). doi:10.1016/j.measure-ment.2019.106975.
  • Ö. Oren and C. Sensogut, Determination of safe storage types for coals with regard to their susceptibility to spontaneous combustion – Tuncbilek coal case, Int. J. Coal Prep. Utilization 38 (6) (2018), pp. 290–301. doi:10.1080/19392699.2016.1252339.
  • D.C. Panigrahi and H.B. Sahu, Classification of coal seams with respect to their spontaneous heating susceptibility—a neural network approach, Geotech. Geol. Eng. 22 (4) (2004), pp. 457–476. doi:10.1023/B:GEGE.0000047040.70764.90.
  • B. Moghtaderi, B.Z. Dlugogors, and E.M. Kennedy, Effects of wind flow on self-heating characteristics of coal stockpiles, Process Saf. Environ. Prot. 78 (6) (2000), pp. 445–453. doi:10.1205/095758200530998.
  • A. Rosema, H. Guan, and H. Veld, Simulation of spontaneous combustion, to study the causes of coal fires in the Rujigou Basin, Fuel 80 (1) (2001), pp. 7–16. doi:10.1016/S0016-2361(00)00065-X.
  • B. Rúa, A.D. Aragón, P.B. Baena, and O. Botero, Statistical analysis to establish an ignition scenario based on extrinsic and intrinsic variables of coal seams that affect spontaneous combustion, Int. J. Min. Sci. Technol. 29 (5) (2018), pp. 731–737. doi:10.1016/j.ijmst.2018.05.008.
  • M. Onifade, Spontaneous combustion liability of coals and coal-shales in the South African coalfields, A Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2018.
  • D.C. Panigrahi, A. Ojha, N.C. Saxena, and B.K. Kejriwal, A study of coal oxygen interaction by using Russian U-Index and its correlation with basic constituents of coal with particular reference of Jharia coal field, International conference of safety in mines research institutes, New Delhi, India, 1997, pp. 134–141.
  • D.C. Panigrahi and S.K. Ray, Assessment of self-heating susceptibility of indian coal seams - A neural network approach, Arch. Min. Sci. 59 (4) (2014), pp. 1061–1076. doi:10.2478/amsc-2014-0073.
  • L. Yuan and A. Smith, Numerical study on effects of coal properties on spontaneous heating in longwall gob areas, Fuel 87 (15–16) (2008), pp. 3409–3419. doi:10.1016/j.fuel.2008.05.015.
  • Y.J. Zhang, G.G. Wu, H.F. Xu, X.L. Meng, and G. Wang, Prediction of oxygen concentration and temperature distribution in loose coal based on BP neural network, Min. Sci. Technol. 19 (2009), pp. 0216–0219.
  • R.V. Singh, Spontaneous heating and fire in coal mines, Procedia Eng. 62 (2013), pp. 78–90. doi:10.1016/j.proeng.2013.08.046.
  • J. Pandey, D. Kumar, D.C. Panigrahi, and V.K. Singh, Temporal transition analysis of coal mine fire of Jharia coalfield, India, using Landsat satellite imageries, Environ. Earth Sci. 76 (12) (2017) doi:10.1007/s12665-017-6765-8.
  • C. Kuenzer, J. Zhang, Y. Sun, Y. Jia, and S. Dech, Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities, Int. J. Coal Geol. 102 (2012), pp. 75–86. doi:10.1016/j.coal.2012.07.006.
  • Z. Song and C. Kuenzer, Coal fires in China over the last decade: A comprehensive review, Int. J. Coal Geol. 133 (2014), pp. 72–99. doi:10.1016/j.coal.2014.09.004.
  • G.B. Stracher and T.P. Taylor, Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe, Int. J. Coal Geol. (2004). doi:10.1016/j.coal.2003.03.002.
  • S.A. Adamski, The prevention of spontaneous combustion in back-filled waste material at Grotegeluk coal mine, Ph.D. thesis, University of the Witwatersrand, South Africa, 2003.
  • A. Singh and V.K. Singh, Spontaneous coal seam fires: A global phenomenon, Beijing, ERSEC, Ecological Book series 4, International conference on spontaneous coal seam fires, Beijing, P.R. China from 29 November to 1 December 2005, pp. 42–65.
  • X. Qi, D. Wang, X. Zhong, J. Gu, and T. Xu, Characteristics of oxygen consumption of coal at programmed temperatures, Min. Sci. Technol. (2010). doi:10.1016/S1674-5264(09)60210-6.
  • H. Zhu, K. Sheng, Y. Zhang, S. Fang, and Y. Wu, The stage analysis and countermeasures of coal spontaneous combustion based on “five stages” division, PLoS One 13 (8) (2018), pp. 1–15. doi:10.1371/journal.pone.0202724.
  • H. Wang, B.Z. Dlugogorski, and E.M. Kennedy, Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling, Prog. Energy Combust. Sci. 29 (2003), pp. 487–513. doi:10.1016/S0360-1285(03)00042-X.
  • J. Deng, X. Ma, Y. Zhang, Y. Li, and W. Zhu, Effects of pyrite on the spontaneous combustion of coal, Int. J. Coal Sci. Technol. 2 (2015), pp. 306–311. doi:10.1007/s40789-015-0085-y.
  • B. Beamish, Z. Lin, and R. Beamish, Investigating the influence of reactive pyrite on coal self-heating. Wollongong, Proceedings of the twelfth coal operators conference, 16–17 February, Wollongong, Australia, 2012, pp. 294–299.
  • C.L. Chou, Sulphurs in coals: A review of geochemistry and origins, Int. J. Coal Geol. 100 (2012), pp. 1–13. doi:10.1016/j.coal.2012.05.009.
  • M. Itay, C.R. Hill, and D.A. Glasser, A study of the low temperature oxidation of coal, Fuel Process Technol. 21 (1989), pp. 81–97. doi:10.1016/0378-3820(89)90063-5.
  • B. Lu, J. Wang, L. Qiao, and J. Chen, Effect of electrochemical oxidation of pyrite on coal spontaneous combustion, Int. J. Coal Prep. Util. 00 (2020), pp. 1–12. doi:10.1080/19392699.2020.1768079.
  • L. Zeng-hua, W. Ya-li, S. Na, Y. Yong-liang, and Y. Yu-jing, Experiment study of model compound oxidation on spontaneous combustion of coal, Procedia Earth Planet. Sci. 1 (1) (2019), pp. 123–129. doi:10.1016/j.proeps.2009.09.021.
  • A. Acharya, Assessment of spontaneous heating of coals by thermal analysis technique, A research project, 2015.
  • J.R. Wang, Y.Q. Sun, Q.F. Zhao, C.B. Deng, and H.Z. Deng, Basic theory research of coal spontaneous combustion, J. Coal Sci. Eng. 14 (2) (2008), pp. 239–243. doi:10.1007/s12404-008-0050-0.
  • G. Van der Plaats, H. Soons, and H.A. Chermin, Low-temperature oxidation of coal, Thermochimica Acta 82, 1 (1984), pp. 131–136. doi:10.1016/0040-6031(84)87281-0.
  • K.K. Bhattacharyya, The role of desorption of moisture from coal in its spontaneous heating, Fuel 3 (1972), pp. 214–220. doi:10.1016/0016-2361(72)90084-1.
  • W.S. Watanabe and D. Zhang, The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal, Fuel Process Technol. 74 (3) (2001), pp. 145–160. doi:10.1016/S0378-3820(01)00237-5.
  • R.N. Singh and S. Demirbilek, Statistical appraisal of intrinsic factors affecting spontaneous combustion of coal, Min. Sci. Technol. 4 (2) (1987), pp. 155–165. doi:10.1016/S0167-9031(87)90266-0.
  • L.M. Falcon and R.M.S. Falcon, Petrographic composition of Southern African coals in relation to friability, hardness, and abrasive indices, J. South African Inst. Min. Metall. 87 (1987), pp. 323–336.
  • B.K. Misra and B.D. Singh, Susceptibility to spontaneous combustion of Indian coals and lignites: An organic petrographic autopsy, Int. J. Coal Geol. 25 (3–4) (1994), pp. 265–286. doi:10.1016/0166-5162(94)90019-1.
  • S. Uludag, A visit to the research on Wits-Ehac index and its relationship to inherent coal properties for Witbank Coalfied, J. South African Inst. Min. Metall. 107 (2007), pp. 671–690.
  • H. Nalbandian, Propensity of coal to self-heat (Issue CCC/172), 2010. https://www.usea.org/publication/propensity-coal-self-heat-ccc172
  • M. Onifade and B. Genc, Spontaneous combustion of coals and coal-shales, Int. J. Min. Sci. Technol. 28 (6) (2018), pp. 933–940. doi:10.1016/j.ijmst.2018.05.013.
  • M. Onifade and B. Genc, Spontaneous combustion liability of coal and coal-shale: A review of prediction methods, Int. J. Coal Sci. Technol. 6 (2) (2019b), pp. 151–168.
  • S.H. Li and S.W. Parr, The oxidation of Pyrites as a factor in the spontaneous combustion of coal, Ind. Eng. Chem. 18 (12) (1926), pp. 1299–1304. doi:10.1021/ie50204a034.
  • C. Chandra and Y.V.S. Prasad, Effect of coalification on spontaneous combustion of coals, Int. J. Coal Geol. 16 (1990), pp. 225–229. doi:10.1016/0166-5162(90)90047-3.
  • B.Y. Miron, C.P. Lauara, and A.C. Smith, Cause of floor self-heatings in an underground coal mine (Vol. 9415): US Department of the Interior, Bureau of Mines (1992), Report of investigations.
  • S.W. Parr and E.R. Hilgard, Oxidation of sulfur as a factor in coal storage, Ind. Eng. Chem. 17 (2) (1925), pp. 117–118. doi:10.1021/ie50182a004.
  • Y.S. Nugroho, A.C. McIntosh, and B.M. Gibbs, Low-temperature oxidation of single and blended coals, Fuel 79 (15) (2000), pp. 1951–1961. doi:10.1016/S0016-2361(00)00053-3.
  • S. Bhat and P.K. Agarwal, The effect of moisture condensation on the spontaneous combustibility of coal, Fuel 75 (13) (1996), pp. 1523–1532. doi:10.1016/0016-2361(96)00121-4.
  • T.X. Ren, J.S. Edwards, and D. Clarke, Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion, Fuel 78 (14) (1999), pp. 1611–1620. doi:10.1016/S0016-2361(99)00107-6.
  • A.H. Clemens and T.W. Matheson, The role of moisture in the self-heating of low-rank coals, Fuel 75 (7) (1996), pp. 891–895. doi:10.1016/0016-2361(96)00010-5.
  • W. State, G. Survey, L. Cook, and S. Geologist, In this issue : Pyrophoricity of Powder River Basin coals – considerations for coalbed methane devel- opment WYDOT ’ s water well at Mule Creek Junction rest area, Niobrara County, Wyoming, 2001.
  • E.L. Heffern and D.A. Coates, Geologic history of natural coal-bed fires, Powder River basin, USA, Int. J. Coal Geol. (2004). doi:10.1016/j.coal.2003.07.002.
  • A.D. Walters, Joseph Conrad and the spontaneous combustion of coal part 1, Coal Prep. 17 (3–4) (1996), pp. 147–165. doi:10.1080/07349349608905264.
  • R.M.S. Falcon, Macro- and micro-factors affecting coal-seam quality and distribution in southern Africa with particular reference to the No. 2 seam, Witbank coalfield, South Africa, Int. J. Coal Geol. 12 (1–4) (1989), pp. 681–731. doi:10.1016/0166-5162(89)90069-4.
  • R. Morris and T. Atkinson, Seam factor and the spontaneous heating of coal, Min. Sci. Technol. 7 (2) (1988), pp. 149–159. doi:10.1016/S0167-9031(88)90538-5.
  • C.R. Avila, Predicting self-oxidation of coals and coal/biomass blends using thermal and optical methods, Ph.D. thesis, University of Nottingham, Predicting self-oxidation of coals and coal/biomass blends using thermal and optical method, 2012.
  • D.S. Nimaje, D.P. Tripathy, and S.K. Nanda, Development of regression models for assessing fire risk of some Indian coals, Int. J. Intell. Syst. Appl. 5 (2) (2013), pp. 52–58. doi:10.5815/ijisa.2013.02.06.
  • B. Gong, P.J. Pigram, and R.N. Lamb, Surface studies of low-temperature oxidation of bituminous coal vitrain bands using XPS and SIMS, Fuel 77 (9–10) (1998), pp. 1081–1087. doi:10.1016/S0016-2361(98)00002-7.
  • M.V. Kök, Recent developments in the application of thermal analysis techniques in fossil fuels, J. Therm. Anal. Calorim. 91 (3) (2008), pp. 763–773. doi:10.1007/s10973-006-8282-y.
  • D.I. Cole, Observations on a burning cliff, Proceedings of the Dorset Natural History and Archaeological Society for 1974, Dorchester, Dorset, UK 96, 1975, pp. 16–19.
  • J. Ribeiro, I. Suárez-Ruiz, C.R. Ward, and D. Flores, Petrography and mineralogy of self-burning coal wastes from anthracite mining in the El Bierzo Coalfield (NW Spain), Int. J. Coal Geol. 154–155 (2016), pp. 92–106. doi:10.1016/j.coal.2015.12.011.
  • B. Genc and A. Cook, Spontaneous combustion risk in South African coalfields, J. South. African Inst. Min. Metall. 115 (7) (2015), pp. 563–568. doi:10.17159/2411-9717/2015/v115n7a1.
  • D.R. Humphreys, A study of the propensity of Queensland coals to spontaneous combustion, ME thesis (unpublished),University of Queensland, Brisbane, 1979.
  • S.D. Barve and V. Mahadevan, Prediction of spontaneous heating liability of Indian coals based on proximate constituents,  In: Proceedings of the 12th international coal preparation congress, 23–27 May, Cracow, Poland  (1994), pp. 557–562.
  • W.L. Whitehead, Vacuum Differential Thermal Analysis, Science (New York, N.Y.) 111 (2881) (1950), pp. 279–281. doi:10.1126/science.111.2881.279.
  • O.P. Mahajan and P.L. Walker, Water adsorption on coals, Fuel 50 (3) (1971), pp. 308–317. doi:10.1016/0016-2361(71)90019-6.
  • S.C. Banerjee, Prevention and Combating Mine Fires, Oxford and IBH Publishing Co Pvt Ltd, New Delhi, 2000, pp. p 33.
  • Z.A. Mthabela, Prediction of spontaneous combustion in coal by use of thermogravimetry, M. S. thesis, Department of Metallurgical Engineering University of Witwatersrand, Johannesburg, 2015.
  • M.V. Graan and J.R. Bunt, Evaluation of A TGA method to predict the ignition temperature and spontaneous combustion propensity of coals of different rank, 2016, pp. 24–28. 10.15242/iae.iae1116404
  • D. Cliff, D. Rowlands, and J. Sleeman, Spontaneous Combustion in Australian Underground Coal Mines Safety in Mines, Testing and Research Station, Brisbane, Australia, 1996.
  • J.D. Davis and D.A. Reynolds, Spontaneous heating of coal, TP 409, US Bureau of Mines, 1928, pp. 74.
  • J. Stott, Influence of moisture on the spontaneous heating of coal, Nature 188 (54) (1960) doi:10.1038/188054a0.
  • P. Rosin, Spontaneous combustion of semi-coke from brown coal, Braunkohle, Translation by H.S. Taylor, Fuel 8 (1929), pp. 66–78.
  • J. Abdulsalam, M. Onifade, J. Mulopo, and S. Bada, Self-heating characteristics of materials producing activated carbon, J. Coal Prep. Utilization (2020). doi:10.1080/19392699.2020.1729138.
  • M.J. Gouws, G.J. Gibbo, L. Wade, and H.R. Phillips, An adiabatic apparatus to establish the spontaneous combustion propensity of coal, Min. Sci. Technol. 13 (1991), pp. 417–422. doi:10.1016/0167-9031(91)90890-O.
  • M. Onifade and B. Genc, Modelling spontaneous combustion liability of carbonaceous materials, Int. J. Coal Sci. Technol. 5 (2) (2018), pp. 191–212. doi:10.1007/s40789-018-0209-2.
  • M. Onifade and B. Genc, Prediction of the spontaneous combustion liability of coal and coal-shale using statistical analysis, J. S. Afr. Inst. Min. Metall. 118 (2018), pp. 799–808.
  • M.A. Smith and D. Glasser, Spontaneous combustion of carbonaceous stockpiles, Part II, Factors affecting the rate of the low-temperature oxidation reaction, Fuel 84 (9) (2005), pp. 1161–1170. doi:10.1016/j.fuel.2004.12.005.
  • J. Zhu, N. He, and D. Li, The relationship between oxygen consumption rate and temperature during coal spontaneous combustion, Saf. Sci. 50 (4) (2012), pp. 842–845. doi:10.1016/j.ssci.2011.08.023.
  • X.H. Zhang, H. Wen, J. Deng, X.C. Zhang, and J.C. Tien, Forecast of coal spontaneous combustion with artificial neural network model based on testing and monitoring gas indices, J. Coal Sci. Eng. 17 (3) (2011), pp. 336–339. doi:10.1007/s12404-011-0321-z.
  • H. Xiao and Y. Tian, Prediction of mine coal layer spontaneous combustion danger based on genetic algorithm and BP neural networks, Proc. Eng. 26 (2011), pp. 139–146. doi:10.1016/j.proeng.2011.11.2151.
  • A.H. Ozdeniz and N. Yilmaz, Artificial neural network modeling of the spontaneous combustion occurring in the industrial-scale coal stockpiles with 10–18 mm coal grain sizes, Energy Sources, Part A: Recovery, Utilization and Environmental Effects 31 (16) (2009), pp. 1425–1435. doi:10.1080/15567030802092817.
  • Z. Song, H. Zhu, G. Jia, and C. He, Comprehensive evaluation on self-ignition risks of coal stockpiles using fuzzy AHP approaches, J. Loss Prev. Process Ind. 32 (1) (2014), pp. 78–94. doi:10.1016/j.jlp.2014.08.002.
  • L. Wang, T. Ren, B. Nie, Y. Chen, C. Lv, H. Tang, and J. Zhang, Development of a spontaneous combustion TARPs system based on BP neural network, Int. J. Min. Sci. Technol. 25 (5) (2015), pp. 803–810. doi:10.1016/j.ijmst.2015.07.016.
  • H.B. Sahu, S. Padhee, and S.S. Mahapatra, Prediction of spontaneous heating susceptibility of Indian coals using fuzzy logic and artificial neural network models, Expert. Syst. Appl. 38 (3) (2011), pp. 2271–2282. doi:10.1016/j.eswa.2010.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.