291
Views
0
CrossRef citations to date
0
Altmetric
Article

Innovative AI-based multi-objective mixture design optimisation of CPB considering properties of tailings and cement

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 110-126 | Received 02 Aug 2022, Accepted 05 Dec 2022, Published online: 28 Dec 2022

References

  • E. Sadrossadat, H. Basarir, G. Luo, A. Karrech, R. Durham, A. Fourie, and M. Elchalakani, Multi-objective mixture design of cemented paste backfill using particle swarm optimisation algorithm, Miner. Eng. 153 (2020), pp. 106385. doi:10.1016/j.mineng.2020.106385.
  • E. Yilmaz and M. Fall, Introduction to paste tailings management, in Paste Tailings Management, E. Yilmaz and M. FallSpringer, eds., Switzerland, 2017, pp. 1–5. doi:10.1007/978-3-319-39682-8.
  • I. Cavusoglu, E. Yilmaz, and A.O. Yilmaz, Sodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfill, Powder Technol. 384 (2021) (2021), pp. 17–28. doi:10.1016/j.powtec.2021.02.013.
  • H.Q. Jiang, J. Han, Y.H. Li, E. Yilmaz, Q. Sun, and J. Liu, Relationship between ultrasonic pulse velocity and uniaxial compressive strength for cemented paste backfill with alkali-activated slag, Nondestruct. Test. Eval. 35 (4) (2020), pp. 359–377. doi:10.1080/10589759.2019.1679140.
  • Y.P. Kou, H.Q. Jiang, L. Ren, E. Yilmaz, and Y.H. Li, Rheological properties of cemented paste backfill with alkali-activated slag, Minerals 10 (3) (2020), pp. 288. doi:10.3390/min10030288.
  • G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater. 338 (2022), pp. 127667. doi:10.1016/j.conbuildmat.2022.127667.
  • C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng. 144 (2019), pp. 106025. doi:10.1016/j.mineng.2019.106025.
  • A. Carneiro and A. Fourie. An integrated approach to cost comparisons of different tailings management options. Paste 2019: Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings, Australian Centre for Geomechanics, Perth, 2019. 115–126.
  • M. Fall and M. Benzaazoua. Advances in predicting performance properties and cost of paste backfill. Proceedings on Tailings and Mine Waste, Vail, 03, 2003. 73–85.
  • C. Dai, A. Wu, Y. Qi, and Z. Chen, The optimisation of mix proportions for cement paste backfill materials via Box–Behnken experimental method, J. Inst. Eng. India Ser. D. 100 (2) (2019), pp. 307–316. doi:10.1007/s40033-019-00180-7.
  • C. Qi, Q. Chen, A. Fourie, and Q. Zhang, An intelligent modelling framework for mechanical properties of cemented paste backfill, Miner. Eng. 123 (2018), pp. 16–27. doi:10.1016/J.MINENG.2018.04.010.
  • J. Liu, G. Li, S. Yang, and J. Huang, Prediction models for evaluating the strength of cemented paste backfill: A comparative study, Minerals 10 (11) (2020), pp. 1041. doi:10.3390/min10111041.
  • E. Sadrossadat and H. Basarir, An evolutionary-based prediction model of the 28-day compressive strength of high-performance concrete containing cementitious materials, Adv. Civ. Eng. Mater. 8 (3) (2019), pp. 20190016. doi:https://doi.org/10.1520/ACEM20190016.
  • C. Qi, A. Fourie, and Q. Chen, Neural network and particle swarm optimisation for predicting the unconfined compressive strength of cemented paste backfill, Constr. Build. Mater. 159 (2018), pp. 473–478. doi:10.1016/j.conbuildmat.2017.11.006.
  • E. Sadrossadat, H. Basarir, A. Karrech, R. Durham, A. Fourie, and H. Bin. The Optimisation of Cemented Hydraulic Backfill Mixture Design Parameters for Different Strength Conditions Using Artificial Intelligence Algorithms. In E. Topal (ed.), Proceedings of the 28th International Symposium on Mine Planning and Equipment Selection - MPES 2019, Perth, 2019. pp. 219–227. Springer.
  • C. Qi, Q. Chen, and S. Kim, Integrated and intelligent design framework for cemented paste backfill: A combination of robust machine learning modelling and multi-objective optimisation, Miner. Eng. 155 (2020), pp. 106422. doi:10.1016/j.mineng.2020.106422.
  • F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng. 30 (2012), pp. 33–43. doi:10.1016/j.mineng.2012.01.009.
  • B. Ercikdi, H. Baki, and M. Izki, Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill, J. Environ. Manage. 115 (2013), pp. 5–13. doi:10.1016/j.jenvman.2012.11.014.
  • B. Ercikdi, A. Kesimal, F. Cihangir, H. Deveci, and İ. Alp, Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage, Cem. Concr. Compos. 31 (4) (2009), pp. 268–274. doi:10.1016/j.cemconcomp.2009.01.008.
  • B. Ercikdi, T. Yilmaz, and G. Kulekci, Strength and ultrasonic properties of cemented paste backfill, Ultrasonics 54 (1) (2014), pp. 195–204. doi:10.1016/j.ultras.2013.04.013.
  • A. Kesimal, B. Ercikdi, F. Cihangir, H. Deveci, Y. Akyol, and S. Ocak, Aktifleştirilmiş yüksek fırın cürufunun farklı inceliğe sahip sülfürlü maden atıklardan hazırlanan macun dolguda çimento alternatif bağlayıcı olarak kullanılması ve performans özelliklerinin araştırılmasıya, Turkey, 2015. 112M378.
  • A. Kesimal, E. Yilmaz, B. Ercikdi, I. Alp, and H. Deveci, Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfil, Mater. Lett. 59 (28) (2005), pp. 3703–3709. doi:10.1016/j.matlet.2005.06.042.
  • T. Ahmed, M. Elchalakani, H. Basarir, A. Karrech, E. Sadrossadat, and B. Yang, Development of ECO-UHPC utilizing gold mine tailings as quartz sand alternative, Cleaner Engineering and Technology 4 (2021), pp. 100176. doi:10.1016/j.clet.2021.100176.
  • E. Sadrossadat, H. Basarir, A. Karrech, and M. Elchalakani, An engineered ML model for prediction of the compressive strength of Eco-SCC based on type and proportions of materials, Clean. Mater. 4 (2022), pp. 100072. doi:https://doi.org/10.1016/j.clema.2022.100072.
  • T. Xie and P. Visintin, A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli, J. Clean. Prod. 203 (2018), pp. 68–82. doi:10.1016/j.jclepro.2018.08.254.
  • A. Simonsen, S. Solismaa, H. Hansen, and P. Jensen, Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristics, Waste Manag. 102 (2020), pp. 710–721. doi:10.1016/j.wasman.2019.11.037.
  • B. Pacewska, & I. Wilińska, Usage of supplementary cementitious materials: Advantages and limitations: Part I. C–S–H, C–A–S–H and other products formed in different binding mixtures, J Therm Anal Calorim. 142, 1 (2020), pp. 371–393. doi:10.1007/s10973-020-09907-1
  • ASTM C143-78. Standard Test Method for Slump Of Portland Cement Concrete, American Society for Testing and Materials, United States, 2017.
  • ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, American Society for Testing and Materials, United States, 2011.
  • N.-D. Hoang, A.-D. Pham, Q.-L. Nguyen, and Q.-N. Pham, Advances in Civil Engineering, Estimating Compressive Strength of High Performance Concrete with Gaussian Process Regression Model 2016, pp. 1–8. doi:10.1155/2016/2861380.
  • W. Liu, J.C. Principe, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction, Vol. 57, John Wiley & Sons, 2011.
  • K. Deb, Multi-objective optimisation using evolutionary algorithms: An introduction, in Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing, A. NG and K. Deb, eds., Springer, London, 2011, pp. 3–34.
  • L. Wang, A.H.C. Ng, and K. Deb, Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing, Springer, London, 2011.
  • A.H. Gandomi, X.-S. Yang, S. Talatahari, and A.H. Alavi, Metaheuristic Applications in Structures and Infrastructures, Elsevier, Amsterdam, 2013.
  • F. Pianosi, K. Beven, J. Freer, J.W. Hall, J. Rougier, D.B. Stephenson, and T. Wagener, Sensitivity analysis of environmental models: A systematic review with practical workflow, Environ. Model. Softw. 79 (2016), pp. 214–232. doi:10.1016/j.envsoft.2016.02.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.