691
Views
1
CrossRef citations to date
0
Altmetric
Article

An insight into failure of iron ore mine tailings dams

ORCID Icon & ORCID Icon
Pages 127-147 | Received 25 Apr 2022, Accepted 05 Dec 2022, Published online: 28 Dec 2022

References

  • S.G. Vick, Planning, Design, and Analysis of Tailings Dams, BiTech Publishers Ltd, Vancouver, Canada, 1990.
  • G. Blight, Geotechnical Engineering for Mine Waste Storage Facilities, CRC Press, 2010. 10.1201/9780203859407
  • D. Kossoff, W.E. Dubbin, M. Alfredsson, S.J. Edwards, M.G. Macklin, and K.A. Hudson-Edwards, Mine tailings dams: Characteristics, failure, environmental impacts, and remediation, Appl. geochem. 51 (2014), pp. 229–245. doi:10.1016/j.apgeochem.2014.09.010.
  • L. Hu, Q. Wen, H. Wu, P. Zhang, and L. Zhang, Geotechnical properties of mine tailings, J. Mater. Ci. Engin 29, 2 (2017), 10.1061/(ASCE)MT.1943-5533.0001736.
  • M. Pirulli, M. Barbero, M. Marchelli, and C. Scavia, The failure of the Stava valley tailings dams (northern Italy): Numerical analysis of the flow dynamics and rheological properties, Geoenviron. Disas 4 (1) (2017), pp. 1–15. doi:10.1186/s40677-016-0066-5.
  • G. Villavicencio, R. Espinace, J. Palma, A. Fourie, and P. Valenzuela, Failures of sand tailings dams in a highly seismic country, Canadian Geotech. J 51 (4) (2014), pp. 449–464. doi:10.1139/cgj-2013-0142.
  • B. LAdeC, G.C. Silva, J.C. Mendes, and R.A.F. Peixoto, Using iron ore tailings from tailing dams as road material, J. Mater. Ci Engine. 28, 10 (2016), 10.1061/(ASCE)MT.1943-5533.0001613.
  • K. Islam and S. Murakami, Global-scale impact analysis of mine tailings dam failures: 1915–2020, Glob Environ. Change 70 (2021), pp. 70. doi:10.1016/j.gloenvcha.2021.102361.
  • H. Ferreira and M.G.P. Leite, A life cycle assessment study of iron ore mining, J. Clean. Prod. 108 (2015), pp. 1081–1091. doi:http://dx.doi.org/10.1016/j.jclepro.2015.05.140.
  • K.D.S. Pires, J.J. Mendes, V.C. Figueiredo, F.L. da Silva, F.L. von Krüger, C.B. Vieira, and F.G.S. Araújo, Mineralogical characterization of iron ore tailings from the Quadrilatero Ferrifero, Brazil, by eletronic quantitative mineralogy, Mater. Res 22 (2019), pp. 22. doi:10.1590/1980-5373-MR-2019-0194.
  • K.E. Robinson and G.C. Toland, Case histories of different seepage problems for nine tailings dams, Sec. 4 (1979), pp. 781–800.
  • United Nations Environmental Programme (UNEP). Environmental and safety incidents concerning tailings dams at mines: Results of a survey for the years 1980–1996. A report prepared for United Nations environment programme. industry and environment, Paris, Min. J. Res Services (1996), pp. 135.
  • M. Davies, T. Martin, and P. Lighthall, Mine tailings dams: when things go wrong, AGRA EARTH and Environmental Limited, Burnaby, BC (2000), pp. 13.
  • International Commission on Large Dams (ICOLD), Tailings Dams: Risk of Dangerous Occurrences: Lessons Learnt from Practical Experiences, Paris, Commission Internationale des Grand Barrages, 2001. https://ussdams.wildapricot.org/resources/Documents/ICOLD%202001%20Bulletin%20121.pdf
  • M. Armstrong, R. Petter, and C. Petter, Why have so many tailings dams failed in recent years?, Res. Policy 63 (2019), pp. 101412. doi:10.1016/j.resourpol.2019.101412.
  • M.C. Palu and P.Y. Julien, Review of Tailings Dam Failures in Brazil. Colorado, State University, Fort Collins, USA, 2019.
  • World Information Service on Energy (WISE), Uranium project, 2021 Accessed 10 September 2021. http://www.wise-uranium.org/mdaf.html
  • M.P. Davies, Tailings impoundment failures: Are geotechnical engineers listening?, Geotech. News -Vancouver 20 (2002), pp. 31–36.
  • S. Azam and Q. Li, Tailings dam failures: A review of the last one hundred years, Geotechn. News 28 (4) (2010), pp. 50–53.
  • Z. Lyu, J. Chai, Z. Xu, Y. Qin, and J. Cao, in H. Moayedi ed. A comprehensive review on reasons for tailings dam failures based on case history. Advances in Civil Engineering, 2019, pp.18, 2019. https://doi.org/10.1155/2019/4159306
  • D.L. Spencer, C.A. Bareither, J. Scalia, C.N. Hatton, and K.J. Ward, Characterizing tailings professional labor demand, Min. Engine 74 (8) (2022), pp. 16–25.
  • N.M. Rana, N. Ghahramani, and S.G. Evans et al. Global magnitude-frequency statistics of the failures and impacts of large water-retention dams and mine tailings impoundments. Earth-Sci. Rev. 2022;232. 10.1016/j.earscirev.2022.104144
  • World Mine Tailings Failures (WMTF), from 1915, State of world mine tailings 2020. https://worldminetailingsfailures.org/
  • A.L.M. Halabi, A.T. Siacara, V.K. Sakano, R.G. Pileggi, and M.M. Futai, Tailings dam failures: A historical analysis of the risk, J. Fail. Anal. Prev 22 (2) (2022), pp. 464–477. doi:10.1007/s11668-022-01355-3.
  • J.R. Owen, D. Kemp, L. É, K. Svobodova, and G. Pérez Murillo, Catastrophic tailings dam failures and disaster risk disclosure, Int. J. Disaster Risk Reduct 42 (2020), pp. 42. doi:10.1016/j.ijdrr.2019.101361.
  • M. Rico, G. Benito, and A. Díez-Herrero, Floods from tailings dam failures, J. Hazard. Mater. 154 (1–3) (2008), pp. 79–87. doi:10.1016/j.jhazmat.2007.09.110.
  • M. Rico, G. Benito, A.R. Salgueiro, A. Díez-Herrero, and H.G. Pereira, Reported tailings dam failures: A review of the European incidents in the worldwide context, J. Hazard. Mater. 152 (2) (2008), pp. 846–852. doi:10.1016/j.jhazmat.2007.07.050.
  • I.M. Power, C. Paulo, H. Long, J.A. Lockhart, A.R. Stubbs, D. French, and R. Caldwell, Carbonation, cementation, and stabilization of ultramafic mine tailings, Environ. Sci & Tech 55 (14) (2021), pp. 10056–10066. doi:10.1021/acs.est.1c01570.
  • S. Islam, D.J. Williams, M. Llano-Serna, and C. Zhang, Settling, consolidation and shear strength behaviour of coal tailings slurry, Inter. J. Min. Sci and Tech 30 (6) (2020), pp. 849–857. doi:10.1016/j.ijmst.2020.03.013.
  • P.K. Robertson, L. de Melo, D.J. Williams, and G.W. Wilson, Report of the Expert Panel on the Technical Causes of the Failure of Feijão Dam I, 2019.
  • P.N. Psarropoulos and Y. Tsompanakis, Stability of tailings dams under static and seismic loading, Canadian Geotech. J 45 (5) (2008), pp. 663–675. doi:10.1139/T08-014.
  • S. Zhang and Y. Tan, Risk assessment of earth dam overtopping and its application research, Natural. Hazards 74 (2) (2014), pp. 717–736. doi:10.1007/s11069-014-1207-3.
  • Australian Government Department of Industry Tourism and Resources, Tailings management: Leading practice sustainable development program for the mining industry, Canberra, 2016, Accessed 05 November 2021.
  • R. Furey and J.F. Lupo, Mine tailings: Perspectives for a changing world, Littleton, Society for Mining, Metallurgy & Exploration, Incorporated, 2020, Accessed October 25, 2021, http://public.eblib.com/choice/PublicFullRecord.aspx?p=6420637
  • K. Bulletin, In 1948, the Kimberley tailing dam was breached, 2014. https://www.kimberleybulletin.com/our-town/in-1948-the-kimberley-tailing-dam-was-breached/
  • Cranbrook Daily Townsman, Sullivan tailings ponds through the years, 2014. https://www.cranbrooktownsman.com/news/sullivan-tailings-ponds-through-the-years/
  • Mineral Policy Institute (MPI), Chronology of major tailings dam failures-updated with Mount Polley, 2014. https://www.mpi.org.au/2014/08/chronology-of-major-tailings-dam-failures/
  • B. Dawson, M. Phillip, and M. O’Kane, Sullivan mine fatalities incident: Site setting, acid rock drainage management, land reclamation and investigation into the fatalities, Proceedings of the 2009 International Conference on Securing the Future and 8thICARD, Skellefteå, Sweden, 2009.
  • G. Zhang, P.K. Robertson, and R.W.I. Brachman, Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test, J. Geotech and Geoenviron. Engine 130 (8) (2004), pp. 861–871. doi:10.1061/(ASCE)1090-0241(2004)130:8(861).
  • P. Stevens, J. Kooroshy, G. Lahn, and B. Lee, Conflict and coexistence in the extractive industries, The Royal Institute of International Affairs, Chatham House, pp. 134. (2013).www.chathamhouse.org
  • A. Sadrekarimi and G.A. Riveros, Static liquefaction analysis of the Fundão dam failure, Geotech and Geo. Engine: An Inter J. 38 (6) (2020), pp. 6431–6446. doi:10.1007/s10706-020-01446-8.
  • F. Oboni and C. Oboni, Tailings Dam Management for the Twenty-First Century: What Mining Companies Need to Know and Do to Thrive in Our Complex World, Cham, Switzerland, Springer Nature, 2020. Accessed October 25, 2021
  • O. Ledesma, A. Sfriso, and D. Manzanal, Procedure for assessing the liquefaction vulnerability of tailings dams, Comp and Geotech. (2022), pp. 144. doi:10.1016/j.compgeo.2022.104632.
  • M. Cambridge, R. Monroy, and D. Shaw, The consequences of liquefaction on the failure of tailings dams with particular respect to the upstream construction method: Preliminary reflections on the failure of the Brumadinho iron ore tailings dam in 2019, 2019. https://britishdams.org/assets/documents/Event%20Flyers%20and%20information/2019/191015%20-%20Brumadinho%20Slides.pdf.
  • L.H.S. Rotta, E. Alcântara, E. Park, R.G. Negri, Y.N. Lin, N. Bernardo, T.S.G. Mendes, and C.R.S. Filho, The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil, Int. J. Appl. Earth Obs. Geoinf. 90 (2020), pp. 90. doi:10.1016/j.jag.2020.102119.
  • United Nations Economic Commission for Europe (UNECE), Online Toolkit and Training for Strengthening Mine Tailings Safety, 2021. https://unece.org/environment-policy/industrial-accidents/online-toolkit-and-training-strengthening-mine-tailings
  • N. Adamo, N. Al-Ansari, V. Sissakian, J. Laue, and S. Knutsson, Dam safety: The question of tailings dams, J. Earth Sci and Geotech. Eng 11 (1) (2020), pp. 1–26. doi:10.47260/jesge/1111.
  • B. Ma, L. Cai, X. Li, and S. Jian, Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products, J. Clean. Prod. 127 (2016), pp. 162–171. doi:10.1016/j.jclepro.2016.03.172.
  • J.L.B. Galvão, H.D. Andrade, G.J.B. Silva, R.A.F. Peixoto, and J.C. Mendes, Reuse of iron ore tailings from tailings dams as pigment for sustainable paints, J. Clean. Prod. 200 (2018), pp. 412–422. doi:10.1016/j.jclepro.2018.07.313.
  • ] P.H.R. Borges, F.C.R. Ramos, T.R. Caetano, T.H. Panzerra, H. Santos, Reuse of iron ore tailings in the production of geopolymer mortars, Rem - Inter. Eng. J. 72, 4 (2019), pp. 581–587. doi:10.1590/0370-44672017720169
  • W.C. Fontes, C. Franco de, M. José, L.C.R. Andrade, and A.M. Segadães, Assessment of the use potential of iron ore tailings in the manufacture of ceramic tiles: From tailings-dams to “brown porcelain”, Constr. Build. Mater. 206 (2019), pp. 111–121. doi:10.1016/j.conbuildmat.2019.02.052.
  • A.H. de Souza, F.L. von Krüger, S. Araújo FG da, and J.J. Mendes, Mineralogical characterization applied to iron ore tailings from the desliming stage with emphasis on quantitative electron microscopy (QEM), Mater. Res. 24, 3 (2021), 10.1590/1980-5373-mr-2019-0677.
  • U.S. Army Corps of Engineers. Engineering and design: Slope stability (Ser. Engineer manual, 1110-2-1902). Department of the Army, U.S. Army Corps of Engineers, Washington, DC, pp. 205. (2003).
  • N.T. Ozcan, R. Ulusay, and N.S. Isik, A study on geotechnical characterization and stability of downstream slope of a tailings dam to improve its storage capacity (Turkey), Environ. Earth Sci 69 (6) (2013), pp. 1871–1890. doi:10.1007/s12665-012-2016-1.
  • ] A.B. Fourie, Predicting rainfall-induced slope instability, Proc. Inst. Civ. Eng.: Geotech. Eng. 119, 4 (1996), pp. 211–218. doi:10.1680/igeng.1996.28757
  • L. Clarkson and D. Williams, An overview of conventional tailings dam geotechnical failure mechanisms, Mining, Metallurgy & Exploration. 38 (3) (2021), pp. 1305–1328. doi:10.1007/s42461-021-00381-3.
  • Australian National Committee on Large Dams (ANCOLD). Guidelines on tailings dams: Planning, design, construction, operation and closure, ANCOLD, pp. 84. (2012).
  • D.V. Griffiths and P.A. Lane, Slope stability analysis by finite elements, Géotechnique 49 (3) (1999), pp. 387–403. doi:10.1680/geot.1999.49.3.387.
  • L. Pantelidis and D.V. Griffiths, Stability of earth slopes. Part I: Two-dimensional analysis in closed-form, Inter. J Num and Anal Methods. Geomech 37 (13) (2013), pp. 1969–1986. doi:10.1002/nag.2118.
  • J.M. Duncan, S.G. Wright, T.L. Brandon, Soil Strength and Slope Stability, Second Hoboken, New Jersey, John Wiley & Sons, 2014. Accessed October 24, 2021
  • L.N. Bowker and D.M. Chambers, Root causes of tailings dam overtopping: The economics of risk & consequence, Protections 2016 2nd International Seminar on dam protection against overtopping, Colorado, USA, September 7-9, 2016. https://miningwatch.ca/sites/default/files/2016-bowkerchamber-miningfailures.pdf
  • ] G.H. Kheirkhah, A. Halliday, A. Arenas, H. Zhang, Tailings dam breach analysis: A review of methods, practices, and uncertainties, Mine Water and the Environ. 40, 1 (2021), pp. 128–150. doi:10.1007/s10230-020-00718-2
  • A.B. Fourie, G.E. Blight, and G. Papageorgiou, Static liquefaction as a possible explanation for the Merriespruit tailings dam failure, Canadian Geotech. J. 38 (4) (2001), pp. 707–719. doi:10.1139/t00-112.
  • R. Rodríguez, A. Muñoz‑moreno, A.V. Caparrós, C. García‑garcía, Á. Brime‑barrios, J.C. Arranz‑gonzález, V. Rodríguez‑Gómez, F.J. Fernández‑naranjo, and A. Alcolea, How to prevent flow failures in tailings dams, Mine Water and the Environ. 40 (2021), pp. 83–112. doi:10.1007/s10230-021-00752-8.
  • M. Jefferies and K. Been, Soil Liquefaction: A Critical State Approach (Second, Ser. Applied Geotechnics Series), London: CRC Press LLC, 2015. Accessed 9 November, 2022 doi:https://doi.org/10.1201/b19114
  • C.F. Wan and R. Fell, Investigation of rate of erosion of soils in embankment dams, J. Geotech and Geoenviron. Engine 130 (4) (2004), pp. 373–380. doi:10.1061/(ASCE)1090-0241(2004)130:4(373).
  • X. Yuan, F. Ye, W. Fu, and L. Wen, Estimating the critical shear stress for incipient particle motion of a cohesive soil slope, Sci. Rep. 12 (1) (2022). doi:10.1038/s41598-022-13307-w
  • Y. Xu and L.M. Zhang, Breaching parameters for earth and rockfill dams, J. Geotech and Geoenviron Eng 135 (12) (2009), pp. 1957–1970. doi:10.1061/(ASCE)GT.1943-5606.0000162.
  • ] Z. Wei, G. Yin, J.G. Wang, L. Wan, G. Li, Design, construction and management of tailings storage facilities for surface disposal in China: Case studies of failures, Waste. Manage & Res. 31, 1 (2013), pp. 106–112. doi:10.1177/0734242X12462281
  • L.M. Zhang, M. Peng, D. Chang, and Y. Xu, Dam Failure Mechanisms and Risk Assessment, Singapore, John Wiley & Sons, 2016. Accessed 14 November 2021
  • J. Jin, C. Song, B. Liang, Y. Chen, and M. Su, Dynamic characteristics of tailings reservoir under seismic load, Environ. Earth Sci 77 (18) (2018), pp. 1–11. doi:10.1007/s12665-018-7836-1.
  • G. Castro, On the behavior of soils during earthquakes – liquefaction, Develop. Geotechn. Eng, Soil Dyn and Lique 42 (1987), pp. 169–204. doi:10.1016/b978-0-444-98958-1.50017-0.
  • P. Dutto, M.M. Stickle, M. Pastor, D. Manzanal, A. Yague, S.M. Tayyebi, C. Lin, and M.D. Elizalde, Modelling of fluidised geomaterials: The case of the Aberfan and the gypsum tailings impoundment flowslides, Materials. 10, 5 (2017), 10.3390/ma10050562.
  • P.K. Robertson and R.G. Campanella, Liquefaction potential of sands using the CPT, J. Geotech. Engine 111 (3) (1985), pp. 384–403. doi:10.1061/(ASCE)0733-9410(1985)111:3(384).
  • I.M. Idriss and R.W. Boulanger, Semi-empirical procedures for evaluating liquefaction potential during earthquakes, Soil Dyn. Earthq. Eng 26 (2–4) (2006), pp. 115–130. doi:10.1016/j.soildyn.2004.11.023.
  • U.S. Environmental Protection Agency (USEPA), Design and evaluation of tailings dams, technical report code EPA 530-R94, US EPA, Washington, DC, 1994.
  • H. Agurto-Detzel, M. Bianchi, M. Assumpção, et al., The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence, Geophys. Res. Lett 43 (10) (2016), pp. 4929–4936. doi:10.1002/2016GL069257.
  • N.R. Morgenstern, S.G. Vick, C.B. Viotti, and B.D. Watts, Report on the immediate causes of the failure of the Fundão dam, 2016. Accessed September 20, 2021. https://www.resolutionmineeis.us/documents/fundao-2016.
  • A. Gens and E.E. Alonso, Aznalcóllar Dam failure. Part 2: Stability conditions and failure mechanism, Géotech. 56 (3) (2006), pp. 185–201. doi:10.1680/geot.2006.56.3.185.
  • W.A. Hustrulid, M.K. McCarter, and D.J.A. Van Zyl, Slope Stability in Surface Mining, Littleton, Colo, Society for Mining, Metallurgy, and Exploration, 2009. Accessed October 24, 2021
  • U.S. Bureau of Reclamation (USBR), Internal Erosion Risks for Embankments and Foundations Best practices in dam and levee safety risk analysis, U.S. Department of the Interior Bureau of Reclamation and Army Corps of Engineers, USA, 2019.
  • S.K. Shukla, Core Principles of Soil Mechanics, ICE Publishing, London, 2014.
  • R.D. Holtz, W.D. Kovacs, and T.C. Sheahan, An Introduction to Geotechnical Engineering, 2nd ed. Pearson, Upper Saddle River, NJ, 2011.
  • Federal Ministry Republic of Austria, Sustainability and Tourism and International Organizing Committee for the World Mining Congresses, World Mining Data 2019: Iron and ferro-alloy metals, non-ferrous metals, precious metals, industrial minerals, mineral fuels, (34), pp. 264. Federal Ministry for Sustainability and Tourism, Vienna , 2019.
  • Statista, Iron ore-statistics and facts, 2021. https://www.statista.com/topics/1919/iron-ore/.
  • A.B. Fourie, A. Bouazza, J. Lupo, and P. Abrão, Improving the performance of mining infrastructure through the judicious use of geosynthetics, 9th International Conference on Geosynthetics, Brazil, 2010.
  • Y. Yang, Z. Wei, G. Cao, Y. Yang, H. Wang, S. Zhuang, and T. Lu, A case study on utilizing geotextile tubes for tailings dams construction in China, Geotext and Geomembr. 47 (2) (2019), pp. 187–192. doi:10.1016/j.geotexmem.2018.12.007.
  • J.F. Lupo and K.F. Morrison, Geosynthetic design and construction approaches in the mining industry, Geotext and Geomembr. 25 (2) (2007), pp. 96–108. doi:10.1016/j.geotexmem.2006.07.003.
  • W.P. Hornsey, J. Scheirs, W.P. Gates, and A. Bouazza, The impact of mining solutions/liquors on geosynthetics, Geotext and Geomembr. 28 (2) (2010), pp. 191–198. doi:10.1016/j.geotexmem.2009.10.008.
  • L.Y. Shen, K.P. Zhou, Z.A. Wei, and Y.L. Chen, Research on geosynthetics in tailings dam reinforcement, Adv. Mater. Res 402 (2012), pp. 675–679. https://doi.org/10.4028/www.scientific.net/AMR.402.675
  • S.K. Shukla, An Introduction to Geosynthetic Engineering, London: CRC Press, 2016.
  • K. Stefaniak and M. Wróżyńska, On possibilities of using global monitoring in effective prevention of tailings storage facilities failures, Environ. Sci and Pollut Res. 25 (6) (2018), pp. 5280–5297. doi:10.1007/s11356-017-0995-x.
  • G. Gibson and M. Sandiford, Seismicity and induced earthquakes, 2013. http://www.chiefscientist.nsw.gov.au/__data/assets/pdf_file/0017/31616/Seismicity-and-induced-earthquakes_Gibson-and-Sandiford.pdf
  • A.H. Watson, P.G. Corser, E.E.G. Pardo, T.E.L. Christian, and J. Vandekeybus, A comparison of alternative tailings disposal methods — the promises and realities, Mine Waste 2010, Perth, Australia Mine Waste 2010, Perth, Australia, Perth, Australia. (2010). doi:10.36487/ACG_rep/1008_41_Watson.
  • B.E. Wickland, G.W. Wilson, D. Wijewickreme, and B. Klein, Design and evaluation of mixtures of mine waste rock and tailings, Canadian Geotech. J 43 (9) (2006), pp. 928–945. doi:10.1139/t06-058.
  • D.W. Blowes, Treatise on geochemistry: The geochemistry of acid mine drainage, Elsevier. 2 (2014), pp. 131–190. doi:10.1016/b978-0-08-095975-7.00905-0.
  • Commonwealth of Australia, Preventing Acid and Metalliferous Drainage: Leading Practice Sustainable Development Program for the Mining Industry (lpsdp) (Canberra: Commonwealth of Australia), 2016.
  • B. Yibas, Oxidation processes and formation of acid mine drainage from gold mine tailings, Recovery of Byproducts from Acid Mine Drainage. Treatment (2020), pp. 73–96. doi:10.1002/9781119620204.ch4.
  • Y. Qiu and D.C. Sego, Laboratory properties of mine tailings, Canadian Geotechn. J 38 (1) (2001), pp. 183–190. doi:10.1139/t00-082.
  • G. Yin, Z. Wei, J.G. Wang, L. Wan, and L. Shen, Interaction characteristics of geosynthetics with fine tailings in pullout test, Geosynth. Inter 15 (6) (2008), pp. 428–436. doi:10.1680/gein.2008.15.6.428.
  • ] B. Le Hello, P. Villard, Embankments reinforced by piles and geosynthetics—numerical and experimental studies dealing with the transfer of load on the soil embankment, Engine. Geology. 106, 1 (2009), pp. 78–91. doi:10.1016/j.enggeo.2009.03.001
  • H. Guan and P. Yang, Advance in Artificial Intelligence Method Safety on Warning of Tailings Dam Break, Proceedings of the 2020 International Conference on Computers, Information Processing and Advanced Education, 2022. doi:10.1145/3419635.3419711
  • D. Lumbroso, M.R. Collell, and G. Petkovsek, et al. Damsat: An eye in the sky for monitoring tailings dams. Mine water and the environment : J. Inter Mine Water Asso (IMWA). 2020;40(1):113–127. doi:10.1007/s10230-020-00727-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.